Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3940, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750036

RESUMO

Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.


Assuntos
Desdiferenciação Celular , Diferenciação Celular , Células Epiteliais , Hepatócitos , Animais , Hepatócitos/citologia , Hepatócitos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Camundongos , Organoides/citologia , Organoides/metabolismo , Transição Epitelial-Mesenquimal , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Células Cultivadas , Transdução de Sinais , Vimentina/metabolismo , Via de Sinalização Hippo , Fígado/citologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Técnicas de Cultura de Células/métodos
2.
Zoolog Sci ; 38(6): 531-543, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34854285

RESUMO

In this study, we examined the effects of calyculin A, a phosphatase inhibitor, on motility, protein phosphorylation, and the distribution of phospho-(Ser/Thr) PKA substrates in frozen-thawed bull spermatozoa that are actually used by most farmers for breeding. The data showed that calyculin A, which has been reported to have a positive effect on the motility of ejaculated fresh spermatozoa, distinctly decreased the motility of frozen-thawed bull spermatozoa even if a cell activator, such as caffeine, was present in the incubation medium and that the suppressive effect of calyculin A was dose-dependent and continued for at least 200 min. Immunoblot analyses revealed that de novo protein phosphorylation was not detected in spermatozoa exposed to caffeine or dbcAMP (a cell-permeable cAMP analog), while the addition of calyculin A to the medium brought about the appearance of several phosphorylated proteins at 50 kDa and 75 kDa, suggesting that 50 kDa and 75 kDa proteins, which were phosphorylated by activation of cAMP-dependent PKA, were not dephosphorylated and were accumulated in spermatozoa due to the suppression of calyculin A-sensitive protein phosphatases. Immunofluorescence microscopy revealed that calyculin A caused, alone or in conjunction with caffeine or dbcAMP, the accumulation of phospho-PKA substrates at the annulus, although caffeine or dbcAMP alone did not. This study suggested that calyculin A decreases the motility of frozen-thawed bull spermatozoa concomitant with the accumulation of phospho-(Ser/Thr) PKA substrates at the annulus of flagella.


Assuntos
AMP Cíclico , Motilidade dos Espermatozoides , Animais , Bovinos , Criopreservação , AMP Cíclico/metabolismo , Masculino , Toxinas Marinhas , Oxazóis , Fosforilação , Espermatozoides
3.
Exp Anim ; 70(1): 84-90, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32999214

RESUMO

Production of chimeric animals is often a necessity for the generation of genetically modified animals and has gained popularity in recent years in regenerative medicine for the reconstruction of xenogeneic organs. Aggregation and injection methods are generally used to produce chimeric mice. In the aggregation method, the chimeras are produced by co-culturing embryos and stem cells, and keeping them physically adhered, although it may not be an assured method for producing chimeric embryos. In the injection method, the chimeras are produced by injecting stem cells into the zona pellucida using microcapillaries; however, this technique requires a high degree of skill. This study aimed to establish a novel method for producing chimeric embryos via water-in-oil droplets that differs from conventional methods. In this study, embryonic stem cells and embryos were successfully isolated in the droplets, and the emergence of chimeric embryos was confirmed by co-culture for 6 h. Using this method, the control and operability of stem cell numbers could be regulated, and reproducibility and quantification were improved during the production of chimeric embryos. In addition to the conventional methods for producing chimeric embryos, the novel method described here could be employed for the efficient production of chimeric animals.


Assuntos
Animais Geneticamente Modificados , Quimera , Técnicas de Cocultura/métodos , Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos , Células-Tronco Embrionárias , Óleos , Água , Animais , Células Cultivadas , Feminino , Camundongos , Transplante de Células-Tronco/métodos , Zona Pelúcida
4.
Zygote ; 28(3): 247-249, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32151294

RESUMO

Polyploids generated by natural whole genome duplication have served as a dynamic force in vertebrate evolution. As evidence for evolution, polyploid organisms exist generally, however there have been no reports of polyploid organisms in mammals. In mice, polyploid embryos under normal culture conditions normally develop to the blastocyst stage. Nevertheless, most tetraploid embryos degenerate after implantation, indicating that whole genome duplication produces harmful effects on normal development in mice. Most previous research on polyploidy has mainly focused on tetraploid embryos. Analysis of various ploidy outcomes is important to comprehend the effects of polyploidization on embryo development. The purpose of this present study was to discover the extent of the polyploidization effect on implantation and development in post-implantation embryos. This paper describes for the first time an octaploid embryo implanted in mice despite hyper-polyploidization, and indicates that these mammalian embryos have the ability to implant, and even develop, despite the harmfulness of extreme whole genome duplication.


Assuntos
Blastocisto/metabolismo , Implantação do Embrião , Transferência Embrionária/métodos , Genoma/genética , Poliploidia , Animais , Blastocisto/citologia , Diploide , Feminino , Histocitoquímica/métodos , Camundongos Endogâmicos ICR , Tetraploidia
5.
EMBO Rep ; 20(12): e48251, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31657143

RESUMO

Formation of primordial follicles is a fundamental, early process in mammalian oogenesis. However, little is known about the underlying mechanisms. We herein report that the RNA-binding proteins ELAVL2 and DDX6 are indispensable for the formation of quiescent primordial follicles in mouse ovaries. We show that Elavl2 knockout females are infertile due to defective primordial follicle formation. ELAVL2 associates with mRNAs encoding components of P-bodies (cytoplasmic RNP granules involved in the decay and storage of RNA) and directs the assembly of P-body-like granules by promoting the translation of DDX6 in oocytes prior to the formation of primordial follicles. Deletion of Ddx6 disturbs the assembly of P-body-like granules and severely impairs the formation of primordial follicles, indicating the potential importance of P-body-like granules in the formation of primordial follicles. Furthermore, Ddx6-deficient oocytes are abnormally enlarged due to misregulated PI3K-AKT signaling. Our data reveal that an ELAVL2-directed post-transcriptional network is essential for the formation of quiescent primordial follicles.


Assuntos
Proteína Semelhante a ELAV 2/metabolismo , Redes Reguladoras de Genes , Infertilidade Feminina/genética , Folículo Ovariano/metabolismo , Animais , Células Cultivadas , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteína Semelhante a ELAV 2/genética , Feminino , Camundongos , Oogênese , Folículo Ovariano/citologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(37): E5408-15, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27573846

RESUMO

Splicing can be epigenetically regulated and involved in cellular differentiation in somatic cells, but the interplay of epigenetic factors and the splicing machinery during spermatogenesis remains unclear. To study these interactions in vivo, we generated a germline deletion of MORF-related gene on chromosome 15 (MRG15), a multifunctional chromatin organizer that binds to methylated histone H3 lysine 36 (H3K36) in introns of transcriptionally active genes and has been implicated in regulation of histone acetylation, homology-directed DNA repair, and alternative splicing in somatic cells. Conditional KO (cKO) males lacking MRG15 in the germline are sterile secondary to spermatogenic arrest at the round spermatid stage. There were no significant alterations in meiotic division and histone acetylation. Specific mRNA sequences disappeared from 66 germ cell-expressed genes in the absence of MRG15, and specific intronic sequences were retained in mRNAs of 4 genes in the MRG15 cKO testes. In particular, introns were retained in mRNAs encoding the transition proteins that replace histones during sperm chromatin condensation. In round spermatids, MRG15 colocalizes with splicing factors PTBP1 and PTBP2 at H3K36me3 sites between the exons and single intron of transition nuclear protein 2 (Tnp2). Thus, our results reveal that MRG15 is essential for pre-mRNA splicing during spermatogenesis and that epigenetic regulation of pre-mRNA splicing by histone modification could be useful to understand not only spermatogenesis but also, epigenetic disorders underlying male infertile patients.


Assuntos
Proteínas Cromossômicas não Histona/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Infertilidade Masculina/genética , Proteínas do Tecido Nervoso/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Espermatogênese/genética , Transativadores/genética , Animais , Proteínas de Ligação a DNA , Epigênese Genética , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/patologia , Histona-Lisina N-Metiltransferase/genética , Humanos , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Splicing de RNA/genética , Deleção de Sequência/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
7.
Biochem Biophys Res Commun ; 476(4): 546-552, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27255992

RESUMO

In mouse testes, spermatogonial stem cells (SSCs), a subpopulation of GFRα1 (GDNF family receptor-α1)-positive spermatogonia, are widely distributed along the convoluted seminiferous tubules. The proliferation and differentiation of the SSCs are regulated in part by local expression of GDNF (glial cell-derived neurotorphic factor), one of major niche factors for SSCs. However, the in vivo dynamics of the GDNF-stimulated GFRα1-positive spermatogonia remains unclear. Here, we developed a simple method for transplanting DiI-labeled and GDNF-soaked beads into the mouse testicular interstitium. By using this method, we examined the dynamics of GFRα1-positive spermatogonia in the tubular walls close to the transplanted GDNF-soaked beads. The bead-derived GDNF signals were able to induce the stratified aggregate formation of GFRα1-positive undifferentiated spermatogonia by day 3 post-transplantation. Each aggregate consisted of tightly compacted Asingle and marginal Apaired-Aaligned GFRα1-positive spermatogonia and was surrounded by Aaligned GFRα1-negative spermatogonia at more advanced stages. These data not only provide in vivo evidence for the inductive roles of GDNF in forming a rapid aggregation of GFRα1-positive spermatogonia but also indicate the usefulness of this in vivo assay system of various growth factors for the stem/progenitor spermatogonia in mammalian spermatogenesis.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Espermatogônias/metabolismo , Animais , Agregação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Implantes de Medicamento/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Transdução de Sinais , Espermatogênese/efeitos dos fármacos , Espermatogênese/fisiologia , Espermatogônias/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Testículo/citologia , Testículo/efeitos dos fármacos , Testículo/metabolismo
8.
PLoS One ; 8(8): e72689, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967333

RESUMO

The spermatogonial stem cell (SSC) compartment is maintained by self-renewal of stem cells as well as fragmentation of differentiating spermatogonia through abscission of intercellular bridges in a random and stochastic manner. The molecular mechanisms that regulate this reversible developmental lineage remain to be elucidated. Here, we show that histone H3K27 demethylase, JMJD3 (KDM6B), regulates the fragmentation of spermatogonial cysts. Down-regulation of Jmjd3 in SSCs promotes an increase in undifferentiated spermatogonia but does not affect their differentiation. Germ cell-specific Jmjd3 null male mice have larger testes and sire offspring for a longer period compared to controls, likely secondary to increased and prolonged maintenance of the spermatogonial compartment. Moreover, JMJD3 deficiency induces frequent fragmentation of spermatogonial cysts by abscission of intercellular bridges. These results suggest that JMJD3 controls the spermatogonial compartment through the regulation of fragmentation of spermatogonial cysts and this mechanism may be involved in maintenance of diverse stem cell niches.


Assuntos
Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Espermatogônias/fisiologia , Animais , Desdiferenciação Celular , Diferenciação Celular/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Masculino , Metilação , Camundongos , Fenótipo , Transporte Proteico , Espermatogênese/fisiologia , Espermatogônias/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Testículo/citologia , Testículo/metabolismo
9.
J Vet Med Sci ; 72(5): 621-5, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20009425

RESUMO

We have previously reported the action of whey acidic protein (WAP) inhibiting the proliferation of mouse mammary epithelial cells in the experiments utilizing in vivo and in vitro systems. We report herein the bacteriostatic activity of WAP. Western blot analysis demonstrated successful isolation of WAP from whey fractions of rat milk by column chromatography. The WAP fraction inhibited the growth of Staphylococcus aureus JCM2413 in a dose-dependent manner, but did not inhibit the growth of Escherichia coli. The bacteriostatic activity of WAP was highest at pH 6.6 and was not affected by the presence of 150 mM NaCl. A scanning electron micrograph of bacteria treated with WAP exhibited the disruption of the bacterial cell walls.


Assuntos
Antibacterianos/farmacologia , Proteínas do Leite/farmacologia , Animais , Divisão Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Varredura , Leite/química , Proteínas do Leite/isolamento & purificação , Ratos , Proteínas Recombinantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/ultraestrutura
10.
J Cell Physiol ; 213(3): 793-800, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17541952

RESUMO

Whey acidic protein (WAP) is a major whey protein in milk that has structural similarity to the family of serine protease inhibitors with WAP motif domains characterized by a four-disulfide core. We previously reported that enforced expression of the mouse WAP transgene in mammary epithelial cells inhibits their proliferation in vitro and in vivo by means of suppressing cyclin D1 expression (Nukumi et al., 2004, Dev Biol 274: 31-44). This study was conducted in order to clarify the molecular mechanism of the inhibitory function of WAP in HC11 cells, a mammary epithelial cell line. The assembly of laminin, a component in the extracellular matrix, was much more prominent around WAP-clonal HC11 cells that stably expressed the WAP transgene than around mock-clonal HC11 cells, and the proliferation of WAP-clonal HC11 cells was particularly inhibited in the presence of laminin. A laminin degradation assay demonstrated that WAP inhibited the activity of the pancreatic elastase-mediated cleavage of laminin B1 and the phosphorylation of ERK1/2. ERK1/2 phosphorylation was blocked by an inhibitor of the epidermal growth factor (EGF) receptor AG1478. Treatment with pancreatic elastase was found to enhance the proliferation of mock-clonal HC11 cells, but had no effect on that of WAP-clonal HC11 cells. The proliferation of WAP-clonal HC11 cells was recovered by the addition of exogenous EGF. We concluded that WAP plays some role in regulating the proliferation of mammary epithelial cells by preventing elastase-type serine protease from carrying out laminin degradation and thereby suppressing the MAP kinase signal pathway.


Assuntos
Proliferação de Células , Células Epiteliais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Laminina/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas do Leite/metabolismo , Serina Endopeptidases/metabolismo , Animais , Western Blotting , Técnicas de Cultura de Células , Linhagem Celular , Células Clonais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Imuno-Histoquímica , Laminina/análise , Glândulas Mamárias Animais/citologia , Camundongos , Proteínas do Leite/genética , Elastase Pancreática/análise , Plasmídeos , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transfecção
11.
Cancer Lett ; 252(1): 65-74, 2007 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-17215074

RESUMO

Whey acidic protein (WAP) is a major component of whey, which has two or three WAP motif domains characterized by a four-disulfide core (4-DSC) structure similar to the serine protease inhibitor. We have previously found that WAP inhibits the proliferation of mammary epithelial cells in vitro and in vivo [N. Nukumi, K. Ikeda, M. Osawa, T. Iwamori, K. Naito, H. Tojo, Regulatory function of whey acidic protein in the proliferation of mouse mammary epithelial cells in vivo and in vitro, Dev. Biol. 274 (2004) 31-44]. We report herein that WAP also reduces the progression of human breast cancer cells (MCF-7 and MDA-MB-453 cells). We have demonstrated that the forced expression of WAP in MCF-7 cells reduces the proliferation in either the presence or absence of estrogen. The tumor progression of WAP-expressing MCF-7 cells in nude mice is significantly suppressed more than that of mock-MCF-7 cells following the reduced expression of angiopoietin-2 gene. We have confirmed that the invasive activity of breast cancer cells is reduced to approximately 30% of that of mock cells by the forced expression of exogenous WAP through its inhibition of degradation of laminin. These data suggest that WAP has a protease-inhibitory function on the progression of breast cancer cells. It is therefore possible to utilize WAP as therapeutic protein against tumorigenesis of breast cancer.


Assuntos
Neoplasias da Mama/prevenção & controle , Transformação Celular Neoplásica/metabolismo , Proteínas do Leite/metabolismo , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Progressão da Doença , Feminino , Humanos , Camundongos , Proteínas do Leite/genética , Peptídeo Hidrolases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Reprod Dev ; 52(2): 315-20, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16462094

RESUMO

Although whey acidic protein (WAP) has been identified in the milk of a range of species, it has been predicted that WAP is not secreted into human milk as a result of critical point mutations within the coding region. In the present study, we first investigated computationally the promoter region of mutated human WAP genes by comparing with those of other known WAP genes. Computational database analyses showed that the human WAP promoter region was highly conserved, as in other species with milk WAP. Next, we evaluated the activity of the human WAP promoter (2.6 kb) using a reporter gene assay. MCF-7 cells were stably transfected with the hWAP/hGH (human growth hormone) fusion gene, cultured on Matrigel, and treated with lactogenic hormones. Radioimmunoassay detected hGH in the culture medium, indicating that the human WAP promoter was responsible for the lactogenic hormones. The human WAP promoter was significantly more active in MCF-7 cells than the mouse WAP promoter (2.4 kb). The present results provide us with important information on the molecular evolution of milk protein genes.


Assuntos
Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Colágeno/metabolismo , Colágeno/farmacologia , Biologia Computacional , Sequência Conservada , Bases de Dados Genéticas , Combinação de Medicamentos , Evolução Molecular , Humanos , Laminina/metabolismo , Laminina/farmacologia , Proteínas do Leite/genética , Leite Humano , Modelos Genéticos , Modelos Estatísticos , Mutação Puntual , Proteoglicanas/metabolismo , Proteoglicanas/farmacologia , Radioimunoensaio , Análise de Sequência de DNA , Transfecção
13.
J Reprod Dev ; 51(5): 649-56, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16046839

RESUMO

We previously reported that the enforced expression of exogenous whey acidic protein (WAP) significantly inhibited the proliferation of mouse mammary epithelial cells (HC11 and EpH4/H6 cells). This paper presents the first evidence that WAP also depresses the proliferation of mammary tumor cells from mouse (MMT cells) and human (MCF-7 cells). We established WAP-clonal MMT and MCF-7 cell lines, and confirmed the secretion of WAP from the WAP-clonal cells into culture medium. The enforced expression of WAP significantly inhibited the proliferation of MMT and MCF-7 cells in in vitro culture. FACScan analyses revealed that G0/G1 phase cell-cycle progression was disordered and elongated in the WAP-clonal MMT and MCF-7 cells compared to that of the control cells. The expression of cyclin D1 was significantly decreased in the WAP-clonal MMT and MCF-7 cells, suggesting that progression from the G1 to the S phase was delayed in the WAP-clonal cells. The present results indicate that WAP plays a negative regulatory role in the cell-cycle progression of mammary tumor cells via a paracrine mechanism.


Assuntos
Ciclo Celular/fisiologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Proteínas do Leite/genética , Animais , Western Blotting , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Células Clonais , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Leite/metabolismo , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
14.
Dev Biol ; 274(1): 31-44, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15355786

RESUMO

Although possible biological functions of whey acidic protein (WAP) have been suggested, few studies have focused on investigating the function of WAP. This paper describes evidence for WAP function in lobulo-alveolar development in mammary glands in vivo and in the cell cycle progression of mammary epithelial cells in vitro. Ubiquitous overexpression of WAP transgene impaired only lobulo-alveolar development in the mammary glands of transgenic female mice but not other physiological functions, indicating that the inhibitory function of WAP is specific to mammary alveolar cells. The forced expression of WAP significantly inhibited the proliferation of mouse mammary epithelial cells (HC11 cells and EpH4/K6 cells), whereas it did not affect that of NIH3T3 cells. Co-culturing of WAP-clonal cells and control cells using a transwell insert demonstrated that WAP inhibited the proliferation of HC11 cells through a paracrine action but not that of NIH3T3 cells, and that WAP was able to bind to HC11 cells but not to NIH3T3 cells. Apoptosis was not enhanced in the HC11 cells with stable WAP expression (WAP-clonal HC11 cells). BrdU incorporation and FACScan analyses revealed that cell cycle progression from the G0/G1 to the S phase was inhibited in the WAP-clonal HC11 cells. Among G1 cyclins, the expression of cyclin D1 and D3 was significantly decreased in the WAP-clonal HC11 cells. The present results provide the first documented evidence that WAP plays a negative regulatory role in the cell cycle progression of mammary epithelial cells through an autocrine or paracrine mechanism in vivo.


Assuntos
Células Epiteliais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas do Leite/metabolismo , Fenótipo , Animais , Apoptose/fisiologia , Northern Blotting , Western Blotting , Bromodesoxiuridina , Ciclo Celular/fisiologia , Ciclinas/metabolismo , Primers do DNA , DNA Complementar/genética , Feminino , Imuno-Histoquímica , Glândulas Mamárias Animais/citologia , Camundongos , Camundongos Transgênicos , Proteínas do Leite/genética , Células NIH 3T3 , Plasmídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transfecção , Transgenes/genética
15.
J Reprod Dev ; 50(1): 87-96, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15007206

RESUMO

Although the biological role for whey acidic protein (WAP) in milk has been suggested, its true function is not known. This paper describes evidence for WAP function in the cell-cycle progression of EpH4/K6 (EpH4), mammary epithelial cells in vitro. The forced expression of exogenous WAP significantly impaired the proliferation of EpH4 cells, whereas it did not affect that of NIH3T3 cells. Apoptosis was not enhanced in the EpH4 cells with stable expression of WAP (WAP-clonal EpH4 cells). The analyses of BrdU incorporation revealed that forced WAP expression significantly reduced incorporation of BrdU in WAP-clonal EpH4 cells compared with control cells transfected with empty plasmid. Among G1 cyclins, the level expression of cyclins D1 was significantly lower in the WAP-clonal EpH4 cells than in control cells. The inhibitory action of WAP on the proliferation of EpH4 cells was enhanced by the presence of extracellular matrix (ECM), but not by the presence of a single component comprising ECM. The cultured medium of WAP-clonal EpH4 cells inhibited the proliferation of control cells without WAP expression. The present results indicate that WAP plays a negative regulatory role in the cell-cycle progression of mammary epithelial cells through an autocrine/paracrine mechanism.


Assuntos
Células Epiteliais/citologia , Glândulas Mamárias Animais/citologia , Proteínas do Leite/genética , Animais , Comunicação Autócrina/fisiologia , Divisão Celular/fisiologia , Linhagem Celular , Ciclina D , Ciclinas/genética , Células Epiteliais/fisiologia , Proteínas da Matriz Extracelular/farmacologia , Expressão Gênica , Camundongos , Comunicação Parácrina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA