Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 201: 105297, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341809

RESUMO

Monoclonal antibody therapy is a promising option for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and a cocktail of antibodies (REGN-COV) has been administered to infected patients with a favorable outcome. However, it is necessary to continue generating novel sets of monoclonal antibodies with neutralizing activity because viral variants can emerge that show resistance to the currently utilized antibodies. Here, we isolated a new cocktail of antibodies, EV053273 and EV053286, from peripheral blood mononuclear cells derived from convalescent patients infected with wild-type SARS-CoV-2. EV053273 exerted potent antiviral activity against the Wuhan wild-type virus as well as the Alpha and Delta variants in vitro, whereas the antiviral activity of EV053286 was moderate, but it had a wide-range of suppressive activity on the wild-type virus as well as the Alpha, Beta, Delta, Kappa, Omicron BA.1, and BA.2 variants. With the combined use of EV053273 and EV053286, we observed similar inhibitory effects on viral replication as with REGN-COV in vitro. We further assessed their activity in vivo by using a mouse model infected with a recently established viral strain with adopted infectious activity in mice. Independent experiments revealed that the combined use of EV053273 and EV053286 or the single use of each monoclonal antibody efficiently blocked infection in vivo. Together with data showing that these two monoclonal antibodies could neutralize REGN-COV escape variants and the Omicron variant, our findings suggest that the EV053273 and EV053286 monoclonal antibody cocktail is a novel clinically applicable therapeutic candidate for SARS-CoV-2 infection.


Assuntos
Antineoplásicos Imunológicos , Tratamento Farmacológico da COVID-19 , Anticorpos Monoclonais , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Anticorpos Antivirais , Antivirais/farmacologia , Antivirais/uso terapêutico , Combinação de Medicamentos , Humanos , Leucócitos Mononucleares , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
2.
PLoS Pathog ; 17(2): e1008859, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534867

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS.


Assuntos
Antígenos Virais/imunologia , Nucleoproteínas/imunologia , Phlebovirus/imunologia , Febre Grave com Síndrome de Trombocitopenia/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Proteínas do Envelope Viral/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/virologia
3.
J Neuropathol Exp Neurol ; 79(2): 209-225, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31845989

RESUMO

Coxsackievirus B (CVB) causes severe morbidity and mortality in neonates and is sometimes associated with severe brain damage resulting from acute severe viral encephalomyelitis. However, the neuropathology of CVB infection remains unclear. A prototype strain of coxsackievirus B2 (Ohio-1) induces brain lesions in neonatal mice, resulting in dome-shaped heads, ventriculomegaly, and loss of the cerebral cortex. Here, we characterized the glial pathology in this mouse model. Magnetic resonance imaging revealed an absence of the cerebral cortex within 2 weeks after inoculation. Histopathology showed that virus replication triggered activation of microglia and astrocytes, and induced apoptosis in the cortex, with severe necrosis and lateral ventricular dilation. In contrast, the brainstem and cerebellum remained morphologically intact. Immunohistochemistry revealed high expression of the coxsackievirus and adenovirus receptor (a primary receptor for CVB) in mature neurons of the cortex, hippocampus, thalamus, and midbrain, demonstrating CVB2 infection of mature neurons in these areas. However, apoptosis and neuroinflammation from activated microglia and astrocytes differed in thalamic and cortical areas. Viral antigens were retained in the brains of animals in the convalescence phase with seroconversion. This animal model will contribute to a better understanding of the neuropathology of CVB infection.


Assuntos
Encéfalo/patologia , Encéfalo/virologia , Infecções por Coxsackievirus/patologia , Enterovirus Humano B/fisiologia , Neuroglia/patologia , Neuroglia/virologia , Animais , Animais Recém-Nascidos , Apoptose , Encéfalo/metabolismo , Modelos Animais de Doenças , Encefalite Infecciosa/metabolismo , Encefalite Infecciosa/patologia , Encefalite Infecciosa/virologia , Camundongos , Receptores Virais/metabolismo
4.
Microbiol Immunol ; 64(1): 33-51, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31692019

RESUMO

The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.


Assuntos
Adjuvantes Imunológicos/farmacologia , Infecções por Coronavirus/prevenção & controle , Ouro/química , Imunoglobulina G/imunologia , Pulmão/imunologia , Nanopartículas Metálicas/química , Síndrome Respiratória Aguda Grave/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia , Análise de Variância , Animais , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Coronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Imunização , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Glicoproteína da Espícula de Coronavírus/genética , Receptores Toll-Like , Vacinação , Vacinas Sintéticas , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Vacinas Virais/farmacologia , Vacinas Virais/uso terapêutico
5.
Sci Rep ; 9(1): 11990, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427690

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused by the SFTS phlebovirus (SFTSV). SFTS patients were first reported in China, followed by Japan and South Korea. In 2017, cats were diagnosed with SFTS for the first time, suggesting that these animals are susceptible to SFTSV. To confirm whether or not cats were indeed susceptible to SFTSV, animal subjects were experimentally infected with SFTSV. Four of the six cats infected with the SPL010 strain of SFTSV died, all showing similar or more severe symptoms than human SFTS patients, such as a fever, leukocytopenia, thrombocytopenia, weight loss, anorexia, jaundice and depression. High levels of SFTSV RNA loads were detected in the serum, eye swab, saliva, rectal swab and urine, indicating a risk of direct human infection from SFTS-infected animals. Histopathologically, acute necrotizing lymphadenitis and hemophagocytosis were prominent in the lymph nodes and spleen. Severe hemorrhaging was observed throughout the gastrointestinal tract. B cell lineage cells with MUM-1 and CD20, but not Pax-5 in the lesions were predominantly infected with SFTSV. The present study demonstrated that cats were highly susceptible to SFTSV. The risk of direct infection from SFTS-infected cats to humans should therefore be considered.


Assuntos
Doenças do Gato/virologia , Febres Hemorrágicas Virais/veterinária , Phlebovirus/fisiologia , Animais , Biomarcadores , Biópsia , Doenças do Gato/diagnóstico , Doenças do Gato/mortalidade , Doenças do Gato/transmissão , Gatos , Suscetibilidade a Doenças , Avaliação de Sintomas
6.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626685

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) infection can manifest as a mild illness, acute respiratory distress, organ failure, or death. Several animal models have been established to study disease pathogenesis and to develop vaccines and therapeutic agents. Here, we developed transgenic (Tg) mice on a C57BL/6 background; these mice expressed human CD26/dipeptidyl peptidase 4 (hDPP4), a functional receptor for MERS-CoV, under the control of an endogenous hDPP4 promoter. We then characterized this mouse model of MERS-CoV. The expression profile of hDPP4 in these mice was almost equivalent to that in human tissues, including kidney and lung; however, hDPP4 was overexpressed in murine CD3-positive cells within peripheral blood and lymphoid tissues. Intranasal inoculation of young and adult Tg mice with MERS-CoV led to infection of the lower respiratory tract and pathological evidence of acute multifocal interstitial pneumonia within 7 days, with only transient loss of body weight. However, the immunopathology in young and adult Tg mice was different. On day 5 or 7 postinoculation, lungs of adult Tg mice contained higher levels of proinflammatory cytokines and chemokines associated with migration of macrophages. These results suggest that the immunopathology of MERS-CoV infection in the Tg mouse is age dependent. The mouse model described here will increase our understanding of disease pathogenesis and host mediators that protect against MERS-CoV infection.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) infections are endemic in the Middle East and a threat to public health worldwide. Rodents are not susceptible to the virus because they do not express functional receptors; therefore, we generated a new animal model of MERS-CoV infection based on transgenic mice expressing human DPP4 (hDPP4). The pattern of hDPP4 expression in this model was similar to that in human tissues (except lymphoid tissue). In addition, MERS-CoV was limited to the respiratory tract. Here, we focused on host factors involved in immunopathology in MERS-CoV infection and clarified differences in antiviral immune responses between young and adult transgenic mice. This new small-animal model could contribute to more in-depth study of the pathology of MERS-CoV infection and aid development of suitable treatments.


Assuntos
Infecções por Coronavirus/metabolismo , Dipeptidil Peptidase 4/metabolismo , Pulmão/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Animais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Macrófagos/metabolismo , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções Respiratórias/metabolismo , Infecções Respiratórias/virologia , Células Vero
7.
Sci Rep ; 6: 30153, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27452272

RESUMO

Virus-specific CD8(+) T cells exert strong suppressive pressure on human/simian immunodeficiency virus (HIV/SIV) replication. These responses have been intensively examined in peripheral blood mononuclear cells (PBMCs) but not fully analyzed in lymph nodes (LNs), where interaction between CD8(+) T cells and HIV/SIV-infected cells occurs. Here, we investigated target antigen specificity of CD8(+) T cells in LNs in a macaque AIDS model. Analysis of virus antigen-specific CD8(+) T-cell responses in the inguinal LNs obtained from twenty rhesus macaques in the chronic phase of SIV infection showed an inverse correlation between viral loads and frequencies of CD8(+) T cells with CD28(+) CD95(+) central memory phenotype targeting the N-terminal half of SIV core antigen (Gag-N). In contrast, analysis of LNs but not PBMCs revealed a positive correlation between viral loads and frequencies of CD8(+) T cells with CD28(-)CD95(+) effector memory phenotype targeting the N-terminal half of SIV envelope (Env-N), soluble antigen. Indeed, LNs with detectable SIV capsid p27 antigen in the germinal center exhibited significantly lower Gag-N-specific CD28(+) CD95(+) CD8(+) T-cell and higher Env-N-specific CD28(-)CD95(+) CD8(+) T-cell responses than those without detectable p27. These results imply that core and envelope antigen-specific CD8(+) T cells show different patterns of interactions with HIV/SIV-infected cells.


Assuntos
Síndrome da Imunodeficiência Adquirida/imunologia , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Produtos do Gene env/imunologia , Memória Imunológica/imunologia , Linfonodos/imunologia , Macaca/imunologia , Animais , Modelos Animais de Doenças , Centro Germinativo/imunologia , Macaca mulatta/imunologia , Vírus da Imunodeficiência Símia/imunologia , Carga Viral/imunologia
8.
PLoS One ; 11(2): e0148184, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26828718

RESUMO

OBJECTIVE: Saffold virus (SAFV), a picornavirus, is occasionally detected in children with acute flaccid paralysis, meningitis, and cerebellitis; however, the neuropathogenicity of SAFV remains undetermined. METHODS: The virulence of two clinical isolates of SAFV type 3 (SAFV-3) obtained from a patient with aseptic meningitis (AM strain) and acute upper respiratory inflammation (UR strain) was analyzed in neonatal and young mice utilizing virological, pathological, and immunological methods. RESULTS: The polyproteins of the strains differed in eight amino acids. Both clinical isolates were infective, exhibited neurotropism, and were mildly neurovirulent in neonatal ddY mice. Both strains pathologically infected neural progenitor cells and glial cells, but not large neurons, with the UR strain also infecting epithelial cells. UR infection resulted in longer inflammation in the brain and spinal cord because of demyelination, while the AM strain showed more infectivity in the cerebellum in neonatal ddY mice. Additionally, young BALB/c mice seroconverted following mucosal inoculation with the UR, but not the AM, strain. CONCLUSIONS: Both SAFV-3 isolates had neurotropism and mild neurovirulence but showed different cell tropisms in both neonatal and young mouse models. This animal model has the potential to recapitulate the potential neuropathogenicity of SAFV-3.


Assuntos
Encéfalo/patologia , Encéfalo/virologia , Infecções por Cardiovirus/virologia , Cardiovirus/isolamento & purificação , Cardiovirus/patogenicidade , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Peso Corporal , Cardiovirus/imunologia , Infecções por Cardiovirus/genética , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/patologia , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Imunidade , Inflamação/patologia , Injeções Intraventriculares , Interferon Tipo I/metabolismo , Camundongos Endogâmicos BALB C , Mucosa/patologia , Mucosa/virologia , Reação em Cadeia da Polimerase em Tempo Real , Tropismo , Virulência , Replicação Viral
9.
PLoS One ; 7(4): e35421, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536382

RESUMO

BACKGROUND: Severe acute respiratory syndrome (SARS) emerged in China in 2002 and spread to other countries before brought under control. Because of a concern for reemergence or a deliberate release of the SARS coronavirus, vaccine development was initiated. Evaluations of an inactivated whole virus vaccine in ferrets and nonhuman primates and a virus-like-particle vaccine in mice induced protection against infection but challenged animals exhibited an immunopathologic-type lung disease. DESIGN: Four candidate vaccines for humans with or without alum adjuvant were evaluated in a mouse model of SARS, a VLP vaccine, the vaccine given to ferrets and NHP, another whole virus vaccine and an rDNA-produced S protein. Balb/c or C57BL/6 mice were vaccinated i.m. on day 0 and 28 and sacrificed for serum antibody measurements or challenged with live virus on day 56. On day 58, challenged mice were sacrificed and lungs obtained for virus and histopathology. RESULTS: All vaccines induced serum neutralizing antibody with increasing dosages and/or alum significantly increasing responses. Significant reductions of SARS-CoV two days after challenge was seen for all vaccines and prior live SARS-CoV. All mice exhibited histopathologic changes in lungs two days after challenge including all animals vaccinated (Balb/C and C57BL/6) or given live virus, influenza vaccine, or PBS suggesting infection occurred in all. Histopathology seen in animals given one of the SARS-CoV vaccines was uniformly a Th2-type immunopathology with prominent eosinophil infiltration, confirmed with special eosinophil stains. The pathologic changes seen in all control groups lacked the eosinophil prominence. CONCLUSIONS: These SARS-CoV vaccines all induced antibody and protection against infection with SARS-CoV. However, challenge of mice given any of the vaccines led to occurrence of Th2-type immunopathology suggesting hypersensitivity to SARS-CoV components was induced. Caution in proceeding to application of a SARS-CoV vaccine in humans is indicated.


Assuntos
Pulmão/patologia , Síndrome Respiratória Aguda Grave/prevenção & controle , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Vacinação/efeitos adversos , Vacinas Virais/imunologia , Animais , Chlorocebus aethiops , Eosinófilos/imunologia , Feminino , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Síndrome Respiratória Aguda Grave/virologia , Células Th2/imunologia , Técnicas de Cultura de Tecidos , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/imunologia , Células Vero , Proteínas do Envelope Viral/imunologia , Vacinas Virais/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA