Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell Rep Med ; 5(3): 101441, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38428427

RESUMO

While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (Treg) cell function specifically in the tumor microenvironment. Treg cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation. In contrast, MED1 is required for Treg cell promotion of tumor growth because MED1 is required for the terminal differentiation of effector Treg cells in the tumor. Suppression of these terminally differentiated Treg cells is sufficient for eliciting antitumor immunity. Both human and murine Treg cells experience divergent paths of differentiation in tumors and matched tissues with non-malignant inflammation. Collectively, we identify a pathway promoting the differentiation of a Treg cell effector subset specific to tumors and demonstrate that suppression of a subset of Treg cells is sufficient for promoting antitumor immunity in the absence of autoimmune consequences.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Animais , Camundongos , Subunidade 1 do Complexo Mediador/metabolismo , Fatores de Transcrição Forkhead , Neoplasias/patologia , Inflamação/metabolismo , Microambiente Tumoral
2.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496411

RESUMO

Therapeutic antibodies have become one of the most influential therapeutics in modern medicine to fight against infectious pathogens, cancer, and many other diseases. However, experimental screening for highly efficacious targeting antibodies is labor-intensive and of high cost, which is exacerbated by evolving antigen targets under selective pressure such as fast-mutating viral variants. As a proof-of-concept, we developed a machine learning-assisted antibody generation pipeline that greatly accelerates the screening and re-design of immunoglobulins G (IgGs) against a broad spectrum of SARS-CoV-2 coronavirus variant strains. These viruses infect human host cells via the viral spike protein binding to the host cell receptor angiotensin-converting enzyme 2 (ACE2). Using over 1300 IgG sequences derived from convalescent patient B cells that bind with spike's receptor binding domain (RBD), we first established protein structural docking models in assessing the RBD-IgG-ACE2 interaction interfaces and predicting the virus-neutralizing activity of each IgG with a confidence score. Additionally, employing Gaussian process regression (also known as Kriging) in a latent space of an antibody language model, we predicted the landscape of IgGs' activity profiles against individual coronaviral variants of concern. With functional analyses and experimental validations, we efficiently prioritized IgG candidates for neutralizing a broad spectrum of viral variants (wildtype, Delta, and Omicron) to prevent the infection of host cells in vitro and hACE2 transgenic mice in vivo. Furthermore, the computational analyses enabled rational redesigns of selective IgG clones with single amino acid substitutions at the RBD-binding interface to improve the IgG blockade efficacy for one of the severe, therapy-resistant strains - Delta (B.1.617). Our work expedites applications of artificial intelligence in antibody screening and re-design even in low-data regimes combining protein language models and Kriging for antibody sequence analysis, activity prediction, and efficacy improvement, in synergy with physics-driven protein docking models for antibody-antigen interface structure analyses and functional optimization.

3.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038129

RESUMO

Regulation of tumoral PD-L1 expression is critical to advancing our understanding of tumor immune evasion and the improvement of existing antitumor immunotherapies. Herein, we describe a CRISPR-based screening platform and identified ATXN3 as a positive regulator for PD-L1 transcription. TCGA database analysis revealed a positive correlation between ATXN3 and CD274 in more than 80% of human cancers. ATXN3-induced Pd-l1 transcription was promoted by tumor microenvironmental factors, including the inflammatory cytokine IFN-γ and hypoxia, through protection of their downstream transcription factors IRF1, STAT3, and HIF-2α. Moreover, ATXN3 functioned as a deubiquitinase of the AP-1 transcription factor JunB, indicating that ATNX3 promotes PD-L1 expression through multiple pathways. Targeted deletion of ATXN3 in cancer cells largely abolished IFN-γ- and hypoxia-induced PD-L1 expression and consequently enhanced antitumor immunity in mice, and these effects were partially reversed by PD-L1 reconstitution. Furthermore, tumoral ATXN3 suppression improved the preclinical efficacy of checkpoint blockade antitumor immunotherapy. Importantly, ATXN3 expression was increased in human lung adenocarcinoma and melanoma, and its levels were positively correlated with PD-L1 as well as its transcription factors IRF1 and HIF-2α. Collectively, our study identifies what we believe to be a previously unknown deubiquitinase, ATXN3, as a positive regulator for PD-L1 transcription and provides a rationale for targeting ATXN3 to sensitize checkpoint blockade antitumor immunotherapy.


Assuntos
Neoplasias Pulmonares , Evasão Tumoral , Humanos , Animais , Camundongos , Evasão Tumoral/genética , Antígeno B7-H1 , Fatores de Transcrição , Imunoterapia , Neoplasias Pulmonares/patologia , Hipóxia , Enzimas Desubiquitinantes , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linhagem Celular Tumoral , Microambiente Tumoral , Ataxina-3 , Proteínas Repressoras
4.
Res Sq ; 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37398311

RESUMO

Integrins plays critical roles in connecting the extracellular matrix and actin skeleton for cell adhesion, migration, signal transduction, and gene transcription, which upregulation is involved in cancer stemness and metastasis. However, the molecular mechanisms underlying how integrins are upregulated in cancer stem cells (CSCs) remain as a biomedical mystery. Herein, we show that the death from cancer signature gene USP22 is essential to maintain the stemness of breast cancer cells through promoting the transcription of a group of integrin family members in particular integrin ß1 (ITGB1). Both genetic and pharmacological USP22 inhibition largely impaired breast cancer stem cell self-renewal and prevented their metastasis. Integrin ß1 reconstitution partially rescued USP22-null breast cancer stemness and their metastasis. At the molecular level, USP22 functions as a bona fide deubiquitinase to protect the proteasomal degradation of the forkhead box M1 (FoxM1), a transcription factor for tumoral ITGB1 gene transcription. Importantly unbiased analysis of the TCGA database revealed a strong positive correlation between the death from cancer signature gene ubiquitin-specific peptidase 22 (USP22) and ITGB1, both of which are critical for cancer stemness, in more than 90% of human cancer types, implying that USP22 functions as a key factor to maintain stemness for a broad spectrum of human cancer types possibly through regulating ITGB1. To support this notion, immunohistochemistry staining detected a positive correlation among USP22, FoxM1 and integrin ß1 in human breast cancers. Collectively, our study identifies the USP22-FoxM1-integrin ß1 signaling axis critical for cancer stemness and offers a potential target for antitumor therapy.

5.
Sci Adv ; 8(47): eabo4116, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427305

RESUMO

The tumor microenvironment (TME) enhances regulatory T (Treg) cell stability and immunosuppressive functions through up-regulation of lineage transcription factor Foxp3, a phenomenon known as Treg fitness or adaptation. Here, we characterize previously unknown TME-specific cellular and molecular mechanisms underlying Treg fitness. We demonstrate that TME-specific stressors including transforming growth factor-ß (TGF-ß), hypoxia, and nutrient deprivation selectively induce two Foxp3-specific deubiquitinases, ubiquitin-specific peptidase 22 (Usp22) and Usp21, by regulating TGF-ß, HIF, and mTOR signaling, respectively, to maintain Treg fitness. Simultaneous deletion of both USPs in Treg cells largely diminishes TME-induced Foxp3 up-regulation, alters Treg metabolic signatures, impairs Treg-suppressive function, and alleviates Treg suppression on cytotoxic CD8+ T cells. Furthermore, we developed the first Usp22-specific small-molecule inhibitor, which dramatically reduced intratumoral Treg Foxp3 expression and consequently enhanced antitumor immunity. Our findings unveil previously unappreciated mechanisms underlying Treg fitness and identify Usp22 as an antitumor therapeutic target that inhibits Treg adaptability in the TME.


Assuntos
Fatores de Transcrição Forkhead , Microambiente Tumoral , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/metabolismo
6.
Nat Genet ; 54(12): 1827-1838, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36175792

RESUMO

We identify the sodium leak channel non-selective protein (NALCN) as a key regulator of cancer metastasis and nonmalignant cell dissemination. Among 10,022 human cancers, NALCN loss-of-function mutations were enriched in gastric and colorectal cancers. Deletion of Nalcn from gastric, intestinal or pancreatic adenocarcinomas in mice did not alter tumor incidence, but markedly increased the number of circulating tumor cells (CTCs) and metastases. Treatment of these mice with gadolinium-a NALCN channel blocker-similarly increased CTCs and metastases. Deletion of Nalcn from mice that lacked oncogenic mutations and never developed cancer caused shedding of epithelial cells into the blood at levels equivalent to those seen in tumor-bearing animals. These cells trafficked to distant organs to form normal structures including lung epithelium, and kidney glomeruli and tubules. Thus, NALCN regulates cell shedding from solid tissues independent of cancer, divorcing this process from tumorigenesis and unmasking a potential new target for antimetastatic therapies.


Assuntos
Neoplasias , Humanos , Camundongos , Animais , Canais Iônicos/genética , Proteínas de Membrana/genética
7.
Am J Cancer Res ; 12(12): 5564-5575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36628293

RESUMO

Cancer cells evade the immune system by expressing inhibitory immune checkpoint receptors such as ecto-5'-nucleotidase (NT5E), also known as CD73, which consequently suppress tumor neoantigen-specific immune response. Blockade of CD73 in mouse models of breast cancer showed a reduction in tumor growth and metastasis. CD73 expression is elevated in a variety of human tumors including breast cancer. While the regulation of CD73 expression at the transcriptional level has been well understood, the factors involved in regulating CD73 expression at the post-transcriptional level have not been identified. Herein, we discovered that the ubiquitin-specific peptidase 22 (USP22), a deubiquitinase associated with poor prognosis and overexpressed in breast cancers, is a positive regulator for CD73. Targeted USP22 deletion resulted in a statistically significant reduction in CD73 protein expression. In contrast, CD73 mRNA expression levels were not reduced, but even slightly increased by USP22 deletion. Further analysis demonstrated that USP22 is a deubiquitinase that specifically interacts with and inhibits CD73 ubiquitination. Consequently, USP22 protects CD73 from ubiquitin-mediated proteasomal degradation in breast cancer cells. Targeted USP22 deletion, inhibits syngeneic breast cancer growth. Collectively, our study reveals USP22 as a positive regulator to promote CD73 expression in breast cancer and provides a rationale to target USP22 in antitumor immune therapy.

8.
Oncol Rep ; 44(1): 263-272, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319659

RESUMO

Neuroblastomas (NBs) have heterogeneous clinical behavior, from spontaneous regression or differentiation to relentless progression. Evidence from our laboratory and others suggests that neurotrophin receptors contribute to these disparate behaviors. Previously, the role of TRK receptors in NB pathogenesis was investigated. In the present study, the expression of RET and its co­receptors in a panel of NB cell lines was investigated and responses to cognate ligands GDNF, NRTN, and ARTN with GFRα1­3 co­receptor expression, respectively were found to be correlated. RET expression was high in NBLS, moderate in SY5Y, low/absent in NBEBc1 and NLF cells. All cell lines expressed at least one of GFRα co­receptors. In addition, NBLS, SY5Y, NBEBc1 and NLF cells showed different morphological changes in response to ligands. As expected, activation of RET/GFRα3 by ARTN resulted in RET phosphorylation. Interestingly, activation of TrkA by its cognate ligand NGF resulted in RET phosphorylation at Y905, Y1015, and Y1062, and this was inhibited in a dose­dependent manner by the TRK inhibitor (CEP­701). Conversely, RET activation by ARTN in NBLS cells led to phosphorylation of TrkA. This suggests a physical association between RET and TRK proteins, and cross­talk between these two receptor pathways. Finally, RET, GFR and TRK expression in primary tumors was investigated and a significant association between RET, its co­receptors and TRK expression was demonstrated. Thus, the present data support a complex model of interacting neurotrophin receptor pathways in the regulation of cell growth and differentiation in NBs.


Assuntos
Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptor trkA/metabolismo , Regulação para Cima , Carbazóis/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Furanos , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/farmacologia , Humanos , Neuroblastoma/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-ret/genética , Transdução de Sinais , Fatores ras de Troca de Nucleotídeo Guanina
9.
Mol Cancer Ther ; 19(3): 920-926, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31871269

RESUMO

TrkB with its ligand, brain-derived neurotrophic factor (BDNF), are overexpressed in the majority of high-risk neuroblastomas (NB). Entrectinib is a novel pan-TRK, ALK, and ROS1 inhibitor that has shown excellent preclinical efficacy in NB xenograft models, and recently it has entered phase 1 trials in pediatric relapsed/refractory solid tumors. We examined entrectinib-resistant NB cell lines to identify mechanisms of resistance. Entrectinib-resistant cell lines were established from five NB xenografts initially sensitive to entrectinib therapy. Clonal cell lines were established in increasing concentrations of entrectinib and had >10X increase in IC50 Cell lines underwent genomic and proteomic analysis using whole-exome sequencing, RNA-Seq, and proteomic expression profiling with confirmatory RT-PCR and Western blot analysis. There was no evidence of NTRK2 (TrkB) gene mutation in any resistant cell lines. Inhibition of TrkB was maintained in all cell lines at increasing concentrations of entrectinib (target independent). PTEN pathway downregulation and ERK/MAPK pathway upregulation were demonstrated in all resistant cell lines. One of these clones also had increased IGF1R signaling, and two additional clones had increased P75 expression, which likely increased TrkB sensitivity to ligand. In conclusion, NB lines overexpressing TrkB developed resistance to entrectinib by multiple mechanisms, including activation of ERK/MAPK and downregulation of PTEN signaling. Individual cell lines also had IGF1R activation and increased P75 expression, allowing preservation of downstream TrkB signaling in the presence of entrectinib. An understanding of changes in patterns of expression can be used to inform multimodal therapy planning in using entrectinib in phase II/III trial planning.


Assuntos
Benzamidas/farmacologia , Biomarcadores Tumorais/análise , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indazóis/farmacologia , Neuroblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteoma/análise , Animais , Apoptose , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , Neuroblastoma/metabolismo , Neuroblastoma/patologia , RNA-Seq , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Elife ; 72018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30303066

RESUMO

A better understanding of processes controlling the development and function of pancreatic islets is critical for diabetes prevention and treatment. Here, we reveal a previously unappreciated function for pancreatic ß2-adrenergic receptors (Adrb2) in controlling glucose homeostasis by restricting islet vascular growth during development. Pancreas-specific deletion of Adrb2 results in glucose intolerance and impaired insulin secretion in mice, and unexpectedly, specifically in females. The metabolic phenotypes were recapitulated by Adrb2 deletion from neonatal, but not adult, ß-cells. Mechanistically, Adrb2 loss increases production of Vascular Endothelial Growth Factor-A (VEGF-A) in female neonatal ß-cells and results in hyper-vascularized islets during development, which in turn, disrupts insulin production and exocytosis. Neonatal correction of islet hyper-vascularization, via VEGF-A receptor blockade, fully rescues functional deficits in glucose homeostasis in adult mutant mice. These findings uncover a regulatory pathway that functions in a sex-specific manner to control glucose metabolism by restraining excessive vascular growth during islet development.


Assuntos
Glucose/metabolismo , Homeostase , Ilhotas Pancreáticas/fisiologia , Neovascularização Fisiológica , Receptores Acoplados a Proteínas G/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Feminino , Deleção de Genes , Intolerância à Glucose , Secreção de Insulina , Camundongos , Receptores Adrenérgicos beta 2
11.
Oncotarget ; 7(13): 15977-85, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26895110

RESUMO

Neuroblastoma (NB), a tumor of the sympathetic nervous system, is the most common extracranial solid tumor of childhood. We and others have identified distinct patterns of genomic change that underlie diverse clinical behaviors, from spontaneous regression to relentless progression. We first identified CHD5 as a tumor suppressor gene that is frequently deleted in NBs. Mutation of the remaining CHD5 allele is rare in these tumors, yet expression is very low or absent, so expression is likely regulated by epigenetic mechanisms. In order to understand the potential role of miRNA regulation of CHD5 protein expression in NBs, we examined all miRNAs that are predicted to target the 3'-UTR using miRanda, TargetScan and other algorithms. We identified 18 miRNAs that were predicted by 2 or more programs: miR-204, -211, -216b, -17, -19ab, -20ab, -93, -106ab, -130ab, -301ab, -454, -519d, -3666. We then performed transient transfections in two NB cell lines, NLF (MYCN amplified) and SY5Y (MYCN non-amplified), with the reporter plasmid and miRNA mimic, as well as appropriate controls. We found seven miRNAs that significantly downregulated CHD5 expression in NB: miR-211, 17, -93, -20b, -106b, -204, and -3666. Interestingly, MYCN upregulates several of the candidates we identified: miR-17, -93, -106b & -20b. This suggests that miRNAs driven by MYCN and other genes represent a potential epigenetic mechanism to regulate CHD5 expression.


Assuntos
DNA Helicases/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica/fisiologia , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Linhagem Celular Tumoral , DNA Helicases/biossíntese , Genes Supressores de Tumor/fisiologia , Humanos , Proteínas do Tecido Nervoso/biossíntese
12.
Cancer Lett ; 372(2): 179-86, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26797418

RESUMO

Neuroblastoma (NB) is one of the most common and deadly childhood solid tumors. These tumors are characterized by clinical heterogeneity, from spontaneous regression to relentless progression, and the Trk family of neurotrophin receptors plays an important role in this heterogeneous behavior. We wanted to determine if entrectinib (RXDX-101, Ignyta, Inc.), an oral Pan-Trk, Alk and Ros1 inhibitor, was effective in our NB model. In vitro effects of entrectinib, either as a single agent or in combination with the chemotherapeutic agents Irinotecan (Irino) and Temozolomide (TMZ), were studied on an SH-SY5Y cell line stably transfected with TrkB. In vivo growth inhibition activity was studied in NB xenografts, again as a single agent or in combination with Irino-TMZ. Entrectinib significantly inhibited the growth of TrkB-expressing NB cells in vitro, and it significantly enhanced the growth inhibition of Irino-TMZ when used in combination. Single agent therapy resulted in significant tumor growth inhibition in animals treated with entrectinib compared to control animals [p < 0.0001 for event-free survival (EFS)]. Addition of entrectinib to Irino-TMZ also significantly improved the EFS of animals compared to vehicle or Irino-TMZ treated animals [p < 0.0001 for combination vs. control, p = 0.0012 for combination vs. Irino-TMZ]. We show that entrectinib inhibits growth of TrkB expressing NB cells in vitro and in vivo, and that it enhances the efficacy of conventional chemotherapy in in vivo models. Our data suggest that entrectinib is a potent Trk inhibitor and should be tested in clinical trials for NBs and other Trk-expressing tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzamidas/farmacologia , Indazóis/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Benzamidas/farmacocinética , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Indazóis/farmacocinética , Irinotecano , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Nus , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptor trkB , Transdução de Sinais/efeitos dos fármacos , Temozolomida , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Cancer ; 14: 150, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26245651

RESUMO

BACKGROUND: Chromodomain-helicase DNA binding protein 5 (CHD5) is an important tumor suppressor gene deleted from 1p36.31 in neuroblastomas (NBs). High CHD5 expression is associated with a favorable prognosis, but deletion or low expression is frequent in high-risk tumors. We explored the role of CHD5 expression in the neuronal differentiation of NB cell lines. METHODS: NB cell lines SH-SY5Y (SY5Y), NGP, SK-N-DZ, IMR5, LAN5, SK-N-FI, NB69 and SH-EP were treated with 1-10 µM 13-cis-retinoic acid (13cRA) for 3-12 days. qRT-PCR and Western blot analyses were performed to measure mRNA and protein expression levels, respectively. Morphological differences were examined by both phase contrast and immunofluorescence studies. RESULTS: Treatment of SY5Y cells with 13cRA caused upregulation of CHD5 expression in a time- and dose-dependent manner (1, 5, or 10 µM for 7 or 12 days) and also induced neuronal differentiation. Furthermore, both NGP and SK-N-DZ cells showed CHD5 upregulation and neuronal differentiation after 13cRA treatment. In contrast, 13cRA treatment of IMR5, LAN5, or SK-N-FI induced neither CHD5 expression nor neuronal differentiation. NB69 cells showed two different morphologies (neuronal and substrate adherent) after 12 days treatment with 10 µM of 13cRA. CHD5 expression was high in the neuronal cells, but low/absent in the flat, substrate adherent cells. Finally, NGF treatment caused upregulation of CHD5 expression and neuronal differentiation in SY5Y cells transfected to express TrkA (SY5Y-TrkA) but not in TrkA-null parental SY5Y cells, and both changes were blocked by a pan-TRK inhibitor. CONCLUSIONS: Treatment with 13cRA induces neuronal differentiation only in NB cells that upregulate CHD5. In addition, NGF induced CHD5 upregulation and neuronal differentiation only in TrkA expressing cells. Together, these results suggest that CHD5 is downstream of TrkA, and CHD5 expression may be crucial for neuronal differentiation induced by either 13cRA or TrkA/NGF signaling.


Assuntos
DNA Helicases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Tretinoína/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Humanos , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Receptor trkA/genética , Receptor trkA/metabolismo , Regulação para Cima
14.
Biomaterials ; 51: 22-29, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25770994

RESUMO

Nanomedicine-based strategies have the potential to improve therapeutic performance of a wide range of anticancer agents. However, the successful implementation of nanoparticulate delivery systems requires the development of adequately sized nanocarriers delivering their therapeutic cargo to the target in a protected, pharmacologically active form. The present studies focused on a novel nanocarrier-based formulation strategy for SN-38, a topoisomerase I inhibitor with proven anticancer potential, whose clinical application is compromised by toxicity, poor stability and incompatibility with conventional delivery vehicles. SN-38 encapsulated in biodegradable sub-100 nm sized nanoparticles (NP) in the form of its rapidly activatable prodrug derivative with tocopherol succinate potently inhibited the growth of neuroblastoma cells in a dose- and exposure time-dependent manner, exhibiting a delayed response pattern distinct from that of free SN-38. In a xenograft model of neuroblastoma, prodrug-loaded NP caused rapid regression of established large tumors, significantly delayed tumor regrowth after treatment cessation and markedly extended animal survival. The NP formulation strategy enabled by a reversible chemical modification of the drug molecule offers a viable means for SN-38 delivery achieving sustained intratumoral drug levels and contributing to the potency and extended duration of antitumor activity, both prerequisites for effective treatment of neuroblastoma and other cancers.


Assuntos
Camptotecina/análogos & derivados , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neuroblastoma/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Animais , Camptotecina/administração & dosagem , Camptotecina/química , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Irinotecano , Camundongos Nus , Neuroblastoma/patologia , Tamanho da Partícula , Pró-Fármacos/administração & dosagem , Resultado do Tratamento , alfa-Tocoferol/química , alfa-Tocoferol/farmacologia , alfa-Tocoferol/uso terapêutico
15.
Cancer Lett ; 360(2): 205-12, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25684664

RESUMO

Neuroblastoma (NB) is the most common and deadly solid tumor in children. The majority of NB patients have advanced stage disease with poor prognosis, so more effective, less toxic therapy is needed. We developed a novel nanocarrier-based strategy for tumor-targeted delivery of a prodrug of SN38, the active metabolite of irinotecan. We formulated ultrasmall-sized (<100 nm) biodegradable poly(lactide)-poly(ethylene glycol) based nanoparticles (NPs) containing SN38 conjugated to tocopherol succinate (SN38-TS). Alternative dosing schedules of SN38-TS NPs were compared to irinotecan. Comparison of SN38-TS NPs (2 doses) with irinotecan (20 doses) showed equivalent efficacy but no cures. Comparison of SN38-TS NPs (8, 8, and 16 doses, respectively) to irinotecan (40 doses) showed that all SN38-TS NP regimens were far superior to irinotecan, and "cures" were obtained in all NP arms. SN38-TS NP delivery resulted in 200× the amount of SN38 in NB tumors at 4 hr post-treatment, compared to SN38 detected for the irinotecan arm; no toxicity was seen with NPs. We conclude that this SN38-TS NP formulation improved delivery, retention, and efficacy, without causing systemic toxicity.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Camptotecina/análogos & derivados , Nanopartículas/administração & dosagem , Neuroblastoma/tratamento farmacológico , Pró-Fármacos/administração & dosagem , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Camptotecina/administração & dosagem , Camptotecina/química , Camptotecina/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Irinotecano , Camundongos , Camundongos Nus , Nanopartículas/química , Neuroblastoma/metabolismo , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Chemother Pharmacol ; 75(1): 131-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25394774

RESUMO

PURPOSE: Neuroblastoma (NB) is one of the most common and deadly pediatric solid tumors. NB is characterized by clinical heterogeneity, from spontaneous regression to relentless progression despite intensive multimodality therapy. There is compelling evidence that members of the tropomyosin receptor kinase (Trk) family play important roles in these disparate clinical behaviors. Indeed, TrkB and its ligand, brain-derived neurotrophic factor (BDNF), are expressed in 50-60 % of high-risk NBs. The BDNF/TrkB autocrine pathway enhances survival, invasion, metastasis, angiogenesis and drug resistance. METHODS: We tested a novel pan-Trk inhibitor, GNF-4256 (Genomics Institute of the Novartis Research Foundation), in vitro and in vivo in a nu/nu athymic xenograft mouse model to determine its efficacy in inhibiting the growth of TrkB-expressing human NB cells (SY5Y-TrkB). Additionally, we assessed the ability of GNF-4256 to enhance NB cell growth inhibition in vitro and in vivo, when combined with conventional chemotherapeutic agents, irinotecan and temozolomide (Irino-TMZ). RESULTS: GNF-4256 inhibits TrkB phosphorylation and the in vitro growth of TrkB-expressing NBs in a dose-dependent manner, with an IC50 around 7 and 50 nM, respectively. Furthermore, GNF-4256 inhibits the growth of NB xenografts as a single agent (p < 0.0001 for mice treated at 40 or 100 mg/kg BID, compared to controls), and it significantly enhances the antitumor efficacy of irinotecan plus temozolomide (Irino-TMZ, p < 0.0071 compared to Irino-TMZ alone). CONCLUSIONS: Our data suggest that GNF-4256 is a potent and specific Trk inhibitor capable of significantly slowing SY5Y-TrkB growth, both in vitro and in vivo. More importantly, the addition of GNF-4256 significantly enhanced the antitumor efficacy of Irino-TMZ, as measured by in vitro and in vivo growth inhibition and increased event-free survival in a mouse xenograft model, without additional toxicity. These data strongly suggest that inhibition of TrkB with GNF-4256 can enhance the efficacy of current chemotherapeutic treatment for recurrent/refractory high-risk NBs with minimal or no additional toxicity.


Assuntos
Antineoplásicos/uso terapêutico , Drogas em Investigação/uso terapêutico , Glicoproteínas de Membrana/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/administração & dosagem , Dacarbazina/efeitos adversos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Relação Dose-Resposta a Droga , Drogas em Investigação/administração & dosagem , Drogas em Investigação/farmacocinética , Drogas em Investigação/farmacologia , Meia-Vida , Humanos , Irinotecano , Glicoproteínas de Membrana/metabolismo , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Neuroblastoma/sangue , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Receptor trkB , Análise de Sobrevida , Temozolomida , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Hum Mutat ; 35(12): 1459-68, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25196463

RESUMO

Congenital heart defects (CHDs) are the most common major birth defects and the leading cause of death from congenital malformations. The etiology remains largely unknown, though genetic variants clearly contribute. In a previous study, we identified a large copy-number variant (CNV) that deleted 46 genes in a patient with a malalignment type ventricular septal defect (VSD). The CNV included the gene NTRK3 encoding neurotrophic tyrosine kinase receptor C (TrkC), which is essential for normal cardiogenesis in animal models. To evaluate the role of NTRK3 in human CHDs, we studied 467 patients with related heart defects for NTRK3 mutations. We identified four missense mutations in four patients with VSDs that were not found in ethnically matched controls and were predicted to be functionally deleterious. Functional analysis using neuroblastoma cell lines expressing mutant TrkC demonstrated that one of the mutations (c.278C>T, p.T93M) significantly reduced autophosphorylation of TrkC in response to ligand binding, subsequently decreasing phosphorylation of downstream target proteins. In addition, compared with wild type, three of the four cell lines expressing mutant TrkC showed altered cell growth in low-serum conditions without supplemental neurotrophin 3. These findings suggest a novel pathophysiological mechanism involving NTRK3 in the development of VSDs.


Assuntos
Cardiopatias Congênitas/genética , Mutação de Sentido Incorreto , Receptor trkC/genética , Transdução de Sinais , Sequência de Aminoácidos , Western Blotting , Linhagem Celular , Estudos de Coortes , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Receptor trkC/química , Receptor trkC/metabolismo , Homologia de Sequência de Aminoácidos
18.
Expert Opin Ther Targets ; 18(3): 277-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24387342

RESUMO

INTRODUCTION: Neuroblastoma (NB) is the most common and deadly solid tumor in children. Despite recent improvements, the long-term outlook for high-risk NB is still < 50%. Further, there is considerable short- and long-term toxicity. More effective, less toxic therapy is needed, and the development of targeted therapies offers great promise. AREAS COVERED: Relevant literature was reviewed to identify current and future therapeutic targets that are critical to malignant transformation and progression of NB. The potential or actual NB therapeutic targets are classified into four categories: i) genes activated by amplification, mutation, translocation or autocrine overexpression; ii) genes inactivated by deletion, mutation or epigenetic silencing; iii) membrane-associated genes expressed on most NBs but few other tissues; or iv) common target genes relevant to NB as well as other tumors. EXPERT OPINION: Therapeutic approaches have been developed to some of these targets, but many remain untargeted at the present time. It is unlikely that single targeted agents will be sufficient for long-term cure, at least for high-risk NBs. The challenge will be how to integrate targeted agents with each other and with conventional therapy to enhance their efficacy, while simultaneously reducing systemic toxicity.


Assuntos
Neoplasias do Sistema Nervoso/genética , Neuroblastoma/genética , Animais , Epigênese Genética , Inativação Gênica , Humanos , Mutação
19.
In Vitro Cell Dev Biol Anim ; 50(3): 188-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24477561

RESUMO

Neuroblastoma is characterized by biological and genetic heterogeneity that leads to diverse, often unpredictable, clinical behavior. Differential expression of the Trk family of neurotrophin receptors strongly correlates with clinical behavior; TrkA expression is associated with favorable outcome, whereas TrkB with unfavorable outcome. Neuroblastoma cells cultured in a microgravity rotary bioreactor spontaneously aggregate into tumor-like structures, called organoids. We wanted to determine if the clinical heterogeneity of TrkA- or TrkB-expressing neuroblastomas was reflected in aggregation kinetics and organoid morphology. Trk-null SY5Y cells were stably transfected to express either TrkA or TrkB. Short-term aggregation kinetics were determined by counting the number of single (non-aggregated) viable cells in the supernatant over time. Organoids were harvested after 8 d of bioreactor culture, stained, and analyzed morphometrically. SY5Y-TrkA cells aggregated significantly slower than SY5Y and SY5Y-TrkB cells, as quantified by several measures of aggregation. SY5Y and TrkB cell lines formed irregularly shaped organoids, featuring stellate projections. In contrast, TrkA cells formed smooth (non-stellate) organoids. SY5Y organoids were slightly smaller on average, but had significantly larger average perimeter than TrkA or TrkB organoids. TrkA expression alone is sufficient to dramatically alter the behavior of neuroblastoma cells in three-dimensional, in vitro rotary bioreactor culture. This pattern is consistent with both clinical behavior and in vivo tumorigenicity, in that SY5Y-TrkA represents a more differentiated, less aggressive phenotype. The microgravity bioreactor is a useful in vitro tool to rapidly investigate the biological characteristics of neuroblastoma and potentially to assess the effect of cytotoxic as well as biologically targeted drugs.


Assuntos
Neuroblastoma/genética , Organoides/metabolismo , Receptor trkA/genética , Agregação Celular/genética , Diferenciação Celular , Linhagem Celular Tumoral , Técnicas de Cultura , Humanos , Cinética , Glicoproteínas de Membrana , Fenótipo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases , Receptor trkA/metabolismo , Receptor trkA/fisiologia , Receptor trkB , Transdução de Sinais
20.
Cancer Chemother Pharmacol ; 70(3): 477-86, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22623209

RESUMO

Neuroblastoma is a common pediatric tumor characterized by clinical heterogeneity. Because it is derived from sympathetic neuroblasts, the NTRK family of neurotrophin receptors plays an integral role in neuroblastoma cell survival, growth, and differentiation. Indeed, high expression of NTRK1 is associated with favorable clinical features and outcome, whereas expression of NTRK2 and its ligand, brain-derived neurotrophic factor (BDNF), are associated with unfavorable features and outcome. AZ64 (Astra Zeneca) is a potent and selective inhibitor of the NTRK tyrosine kinases that blocks phosphorylation at nanomolar concentrations. To determine the preclinical activity of AZ64, we performed intervention trials in a xenograft model with NTRK2-overexpressing neuroblastomas. AZ64 alone significantly inhibited tumor growth compared to vehicle-treated animals (p = 0.0006 for tumor size). Furthermore, the combination of AZ64 with conventional chemotherapeutic agents, irinotecan and temozolomide (irino-temo), showed significantly enhanced anti-tumor efficacy compared to irino-temo alone [(p < 0.0001 for tumor size, p < 0.0005 for event-free survival (EFS)]. We also assessed the combination of AZ64 and local radiation therapy (RT) on a neuroblastoma hindlimb xenograft model, and the efficacy of local RT was significantly increased when animals were treated simultaneously with AZ64 (p < 0.0001 for tumor size, p = 0.0006 for EFS). We conclude that AZ64 can inhibit growth of NTRK-expressing neuroblastomas both in vitro and in vivo. More importantly, it can significantly enhance the efficacy of conventional chemotherapy as well as local RT, presumably by inhibition of the NTRK2/BDNF autocrine survival pathway.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neuroblastoma/tratamento farmacológico , Receptor trkB/antagonistas & inibidores , Animais , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Linhagem Celular Tumoral , Terapia Combinada , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Intervalo Livre de Doença , Humanos , Irinotecano , Camundongos , Camundongos Nus , Neuroblastoma/patologia , Neuroblastoma/radioterapia , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA