Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 13(5): 1826-1844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293145

RESUMO

Head and neck squamous cell carcinoma (HNSC) is the 6th most common cancer around the globe; its underlying molecular mechanisms and accurate molecular markers are still lacking. In this study, we explored hub genes and their potential signaling pathways through which these genes participate in the development of HNSC. The GSE23036 gene microarray dataset was attained from the GEO (Gene Expression Omnibus) database. Hub genes were identified via the Cytohubba plug-in application of the Cytoscape. The Cancer Genome Atlas (TCGA) datasets and cell lines (HOK and FuDu) were used to evaluate expression variations in the hub genes. Moreover, promoter methylation, genetic alteration, gene enrichment, miRNA network, and immunocyte infiltration analysis were also performed to confirm the oncogenic role and biomarker potential of the hub genes in HNSC patients. Based on the hub gene analysis results, four hub genes, including KNTC1 (Kinetochore Associated 1), CEP55 (Centrosomal protein of 55 kDa), AURKA (Aurora A Kinase), and ECT2 (Epithelial Cell Transforming 2), with the highest degree scores were denoted as hub genes. All these four genes were significantly up-regulated in HNSC clinical samples and cell lines relative to their counterparts. Overexpression of KNTC1, CEP55, AURKA, and ECT2 was also associated with poor survival and various clinical parameters of the HNSC patients. Methylation analysis through targeted bisulfite sequencing of HOK and FuDu cell lines revealed that the overexpression of KNTC1, CEP55, AURKA, and ECT2 hub genes was due to their promoter hypomethylation. Moreover, higher expressions of KNTC1, CEP55, AURKA, and ECT2 were positively correlated with the abundance of the CD4+ T cells and macrophage while with the reduction of CD8+ T cells in HNSC samples. Finally, gene enrichment analysis showed that all hub genes are involved in "nucleoplasm, centrosome, mitotic spindle, and cytosol" pathways. In conclusion, the KNTC1, CEP55, AURKA, and ECT2 genes could be potential biomarkers for HNSC patients and provide a novel insight into the diagnosis and treatment of the disease.

2.
Front Immunol ; 11: 1055, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655548

RESUMO

Dengue is one of the most frequently transmitted mosquito-borne diseases in the world, which creates a significant public health concern globally, especially in tropical and subtropical countries. It is estimated that more than 390 million people are infected with dengue virus each year and around 96 million develop clinical pathologies. Dengue infections are not only a health problem but also a substantial economic burden. To date, there are no effective antiviral therapies and there is only one licensed dengue vaccine that only demonstrated protection in the seropositive (Immune), naturally infected with dengue, but not dengue seronegative (Naïve) vaccines. In this review, we address several immune components and their interplay with the dengue virus. Additionally, we summarize the literature pertaining to current dengue vaccine development and advances. Moreover, we review some of the factors affecting vaccine responses, such as the pre-vaccination environment, and provide an overview of the significant challenges that face the development of an efficient/protective dengue vaccine including the presence of multiple serotypes, antibody-dependent enhancement (ADE), as well as cross-reactivity with other flaviviruses. Finally, we discuss targeting T follicular helper cells (Tfh), a significant cell population that is essential for the production of high-affinity antibodies, which might be one of the elements needed to be specifically targeted to enhance vaccine precision to dengue regardless of dengue serostatus.


Assuntos
Vacinas contra Dengue/imunologia , Dengue/imunologia , Dengue/prevenção & controle , Imunidade Adaptativa , Anticorpos Facilitadores , Reações Cruzadas , Dengue/epidemiologia , Vacinas contra Dengue/efeitos adversos , Vírus da Dengue/imunologia , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/tendências , Flavivirus/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata , Modelos Imunológicos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA