Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neuroscience ; 528: 89-101, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37557948

RESUMO

Proteinase-activated receptor-1 (PAR1) is expressed in astrocytes of various brain regions, and its activation is involved in the modulation of neuronal activity. Here, we report effects of PAR1 selective agonist TFLLR on respiratory rhythm generation in brainstem-spinal cord preparations. Preparations were isolated from newborn rats (P0-P4) under deep isoflurane anesthesia and were transversely cut at the rostral medulla. Preparations were superfused with artificial cerebrospinal fluid (25-26 °C), and inspiratory C4 ventral root activity was monitored. The responses to TFLLR of cells close to the cut surface were detected by calcium imaging or membrane potential recordings. Application of 10 µM TFLLR (4 min) induced a rapid and transient increase of calcium signal in cells of the ventrolateral respiratory regions of the medulla. More than 88% of responding cells (223/254 cells from 13 preparations) were also activated by low (0.2 mM) K+ solution, suggesting that they were astrocytes. Immunohistochemical examination demonstrated that PAR1 was expressed on many astrocytes. Respiratory-related neurons in the medulla were transiently hyperpolarized (-1.8 mV) during 10 µM TFLLR application, followed by weak membrane depolarization after washout. C4 burst rate decreased transiently in response to application of TFLLR, followed by a slight increase. The inhibitory effect was partially blocked by 50 µM theophylline. In conclusion, activation of astrocytes via PAR1 resulted in a decrease of inspiratory C4 burst rate in association with transient hyperpolarization of respiratory-related neurons. After washout, slow and weak excitatory responses appeared. Adenosine may be partially involved in the inhibitory effect of PAR1 activation.


Assuntos
Cálcio , Receptor PAR-1 , Animais , Ratos , Animais Recém-Nascidos , Ratos Wistar , Tronco Encefálico/fisiologia , Bulbo , Medula Espinal
2.
Front Psychol ; 14: 1161333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113119

RESUMO

Objective: Improving quality of life (QOL) after surgery is very important. Recently, preoperative anxiety has been suggested to predict postoperative health-related (HR) QOL, however the accuracy of anxiety measurement remains problematic. We examined the relationship between preoperative anxiety level and postoperative HRQOL using qualitative and quantitative assessment of anxiety. Method: We used a detailed anxiety assessment to quantitatively investigate preoperative anxiety as a predictor of postoperative HRQOL in lung cancer patients. Fifty one patients who underwent surgery for lung cancer were included. They were assessed four times: on admission, on discharge, 1 month after surgery, and 3 months after surgery. Anxiety was measured separately as "state anxiety" and "trait anxiety" using the State-Trait Anxiety Inventory, and HRQOL was measured using the EuroQol 5 dimension 5-level. Results: The HRQOL decreased at discharge and gradually recovered over time, reaching the same level at 3 months after surgery as at admission. HRQOL score was lower at discharge than at pre-surgery and 3 months after the surgery (p < 0.0001 each), and the score at 1 month after the surgery was lower than at pre-surgery (p = 0.007). In addition, multiple regression analysis showed that HRQOL at discharge was associated with "state anxiety" rather than "trait anxiety" at admission (p = 0.004). Conclusion: This study identifies the types of anxiety that affect postoperative HRQOL. We suggest that postoperative HRQOL on discharge may be improved by interventions such as psychological or medication treatment for preoperative state anxiety if identified preoperative state anxiety can be managed appropriately.

3.
Pflugers Arch ; 475(2): 233-248, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36289078

RESUMO

One side effect of cisplatin, a cytotoxic platinum anticancer drug, is peripheral neuropathy; however, its central nervous system effects remain unclear. We monitored respiratory nerve activity from the C4 ventral root in brainstem and spinal cord preparations from neonatal rats (P0-3) to investigate its central effects. Bath application of 10-100 µM cisplatin for 15-20 min dose-dependently decreased the respiratory rate and increased the amplitude of C4 inspiratory activity. These effects were not reversed after washout. In separate perfusion experiments, cisplatin application to the medulla decreased the respiratory rate, and application to the spinal cord increased the C4 burst amplitude without changing the burst rate. Application of other platinum drugs, carboplatin or oxaliplatin, induced no change of respiratory activity. A membrane potential analysis of respiratory-related neurons in the rostral medulla showed that firing frequencies of action potentials in the burst phase tended to decrease during cisplatin application. In contrast, in inspiratory spinal motor neurons, cisplatin application increased the peak firing frequency of action potentials during the inspiratory burst phase. The increased burst amplitude and decreased respiratory frequency were partially antagonized by riluzole and picrotoxin, respectively. Taken together, cisplatin inhibited respiratory rhythm via medullary inhibitory system activation and enhanced inspiratory motor nerve activity by changing the firing property of motor neurons.


Assuntos
Cisplatino , Taxa Respiratória , Ratos , Animais , Animais Recém-Nascidos , Cisplatino/farmacologia , Ratos Wistar , Platina , Bulbo/fisiologia , Medula Espinal , Neurônios Motores , Respiração
4.
J Hum Lact ; 38(2): 323-331, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34704491

RESUMO

BACKGROUND: Microwave heating can be effective in preventing cytomegalovirus infection transmitted via human milk. Temperature changes during microwaving using different containers, in different areas inside a container, or using milk from different mothers are not well studied. RESEARCH AIM: To determine temperature changes of human milk during microwaving using different containers, in different container areas, using different human milk, and in a 30-ml soft polypropylene bag (sachet) immersed in water. METHODS: In this experimental in vitro study, human milk (100 ml) was poured into six different bottles. The temperature was monitored simultaneously at each bottle's bottom and surface (microwaving at 600 W) and at nine places inside the container (microwaving at 500 W). Human milk (20 ml) from six participants was inserted into a sachet, then immersed in 80 ml of human milk or water in a bottle, and the temperatures inside and outside the sachet during microwaving (at 500 W) were monitored. RESULTS: The temperature changes at the surface were significantly larger than those at the bottom. Temperatures at the bottoms of different bottles, of human milk from different participants, or inside and outside the sachet, did not differ significantly. No temperature outliers inside the bottle were observed. CONCLUSION: Microwaving at 500 W and 600 W for 60 s was not significantly different in temperature changes among different areas inside bottles or among milk from different participants. A small volume of human milk (up to 100 mL) can be heated using a sachet.


Assuntos
Micro-Ondas , Leite Humano , Aleitamento Materno , Feminino , Calefação , Humanos , Micro-Ondas/uso terapêutico , Temperatura , Água
5.
J Therm Biol ; 100: 103029, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34503776

RESUMO

Thermoregulation is crucial for human survival at various ambient temperatures. Transient receptor potential (TRP) and TWIK-related K+ (TREK) channels expressed in sensory neurons play a role in peripheral thermosensitivity for temperature detection. In addition, these channels have various physiological roles in the skeletal, nervous, immune, vascular, digestive, and urinary systems. In women, the female hormones estradiol (E2) and progesterone (P4), which fluctuate during the menstrual cycle, affect various physiological functions, such as thermoregulation in hot and cold environments. The present review describes the effect of female hormones on TRP and TREK channels and related physiological functions. The P4 decreased thermosensitivity via TRPV1. E2 facilitates temporomandibular joint disease (TRPV1), breast cancer (TRPM8), and calcium absorption in the digestive system (TRPV5 and TRPV6), inhibits the facilitation of vasoconstriction (TRPM3), nerve inflammation (TRPM4), sweetness sensitivity (TRPM5), and menstrual disorders (TRPC1), and prevents insulin resistance (TRPC5) via each channel. P4 inhibits vasoconstriction (TRPM3), sweetness sensitivity (TRPM5), ciliary motility in the lungs (TRPV4), menstrual disorder (TRPC1), and immunity (TRPC3), and facilitates breast cancer (TRPV6) via each channel as indicated. The effects of female hormones on TREK channels and physiological functions are still under investigation. In summary, female hormones influence physiological functions via some TRP channels; however, the literature is not comprehensive and future studies are needed, especially those related to thermoregulation in women.


Assuntos
Estradiol/metabolismo , Ciclo Menstrual , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Progesterona/metabolismo , Sensação Térmica , Canais de Potencial de Receptor Transitório/metabolismo , Feminino , Humanos
6.
PLoS One ; 15(3): e0230080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32155215

RESUMO

Human bone marrow-derived mesenchymal stem/stromal cells (hMSCs) have shown potential in facilitating recovery from spinal cord injury (SCI) through communicating with microglia/macrophages (MG/MΦ). We here focused on chemokines as a candidate for the communication. Selected MG/MΦ-related chemokines were determined gene expression after SCI and further focused CCL2/CCR2 and CCL5/CCR5 to estimate role of the chemokines by hMSCs. Male C57/BL6 mice were subjected to spinal cord transection. Gene expression was assayed in the spinal cords following SCI for selected MG/MΦ-related chemokines and their receptors. hMSCs (5×105 cells) were then transplanted into parenchyma of the spinal cord, and the expressions of the Ccl2/Ccr2 and Ccl5/Ccr5 axes, inflammation, MG/MΦ-polarization, and axonal regeneration were evaluated to measure the influence of the hMSCs. Finally, mouse CCL5 was injected into the spinal cords. Acute increases in gene expression after SCI were observed for most chemokines, including Ccl2; chronic increases were observed for Ccl5. CCL2+-cells merged with NeuN+-neurons. CCR2+ immunoreactivity was principally observed in Ly-6G+/iNOS+-granulocytes on postoperative day (pod) 1, and CCL5+ and CCR5+ immunoreactivity overlapped with NeuN+-neurons and F4/80+-MG/MΦ on pod 14. The hMSC transplantation enhanced Ccl2 and Ccl5 and improved locomotor activity. The hMSC implantation did not alter the number of Ly-6G+/CCR2+ but decreased Il1, Elane, and Mpo on pod 3. Conversely, hMSC transplantation increased expression of Zc3h12a (encodes MCP-1-induced protein) on pod 14. Moreover, hMSC increased the Aif1, and two alternatively activated macrophage (AAM)-related genes, Arg1 and Chil3 (Ym1), as well as axonal regenerative markers, Dpysl2 and Gap43. Gene expression indicative of AAM polarization and axonal regeneration were partially recovered by CCL5 injection. These results suggest that hMSC implantation increases Ccl2 and Ccl5, improves locomotor activity, enhances MG/MΦ polarization to AAM, and increases the gene expression of axonal regenerative markers. These functions of hMSCs might be partially mediated by the CCL2/CCR2 and CCL5/CCR5 axes.


Assuntos
Axônios/patologia , Quimiocina CCL2/farmacologia , Quimiocina CCL5/farmacologia , Transplante de Células-Tronco Mesenquimais , Traumatismos da Medula Espinal/terapia , Animais , Axônios/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Receptores CCR2/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
7.
PLoS One ; 15(1): e0226707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923206

RESUMO

Pancreatic cancer has an extremely poor prognosis, and identification of novel predictors of therapeutic efficacy and prognosis is urgently needed. Chemoresistance-related molecules are correlated with poor prognosis and may be effective targets for cancer treatment. Here, we aimed to identify novel molecules correlated with chemoresistance and poor prognosis in pancreatic cancer. We established 10 patient-derived xenograft (PDX) lines from patients with pancreatic cancer and performed next-generation sequencing (NGS) of tumor tissues from PDXs after treatment with standard drugs. We established a gene-transferred tumor cell line to express chemoresistance-related molecules and analyzed the chemoresistance of the established cell line against standard drugs. Finally, we performed immunohistochemical (IHC) analysis of chemoresistance-related molecules using 80 pancreatic cancer tissues. From NGS analysis, we identified olfactomedin-4 (OLFM4) as having high expression in the PDX group treated with anticancer drugs. In IHC analysis, OLFM4 expression was also high in PDXs administered anticancer drugs compared with that in untreated PDXs. Chemoresistance was observed by in vitro analysis of tumor cell lines with forced expression of OLFM4. In an assessment of tissue specimens from 80 patients with pancreatic cancer, Kaplan-Meier analysis showed that patients in the low OLFM4 expression group had a better survival rate than patients in the high OLFM4 expression group. Additionally, multivariate analysis showed that high expression of OLFM4 was an independent prognostic factor predicting poor outcomes. Overall, our study revealed that high expression of OLFM4 was involved in chemoresistance and was an independent prognostic factor in pancreatic cancer. OLFM4 may be a candidate therapeutic target in pancreatic cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Animais , Transformação Celular Neoplásica , Células HeLa , Humanos , Estimativa de Kaplan-Meier , Camundongos , Prognóstico
8.
J Clin Med ; 8(3)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832213

RESUMO

The ventromedial hypothalamus (VMH) plays an important role in feeding behavior, obesity, and thermoregulation. The VMH contains glucose-sensing neurons, the firing of which depends on the level of extracellular glucose and which are involved in maintaining the blood glucose level via the sympathetic nervous system. The VMH also expresses various receptors of the peptides related to feeding. However, it is not well-understood whether the action of feeding-related peptides mediates the activity of glucose-sensing neurons in the VMH. In the present study, we examined the effects of feeding-related peptides on the burst-generating property of the VMH. Superfusion with insulin, pituitary adenylate cyclase-activating polypeptide, corticotropin-releasing factor, and orexin increased the frequency of the VMH oscillation. In contrast, superfusion with leptin, cholecystokinin, cocaine- and amphetamine-regulated transcript, galanin, ghrelin, and neuropeptide Y decreased the frequency of the oscillation. Our findings indicated that the frequency changes of VMH oscillation in response to the application of feeding-related peptides showed a tendency similar to changes of sympathetic nerve activity in response to the application of these substances to the brain.

9.
PLoS One ; 12(10): e0186637, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073149

RESUMO

Type 1 diabetes mellitus is a progressive disease caused by the destruction of pancreatic ß-cells, resulting in insulin dependency and hyperglycemia. While transplanted bone marrow-derived mesenchymal stem/stromal cells (BMMSCs) have been explored as an alternative therapeutic approach for diseases, the choice of delivery route may be a critical factor determining their sustainability. This study evaluated the effects of intrapancreatic and intravenous injection of human BMMSCs (hBMMSCs) in streptozotocin (STZ)-induced type 1 diabetic mouse model. C57/BL6 mice were intraperitoneally injected with 115 mg/kg STZ on day 0. hBMMSCs (1 × 106 cells) or vehicle were injected into the pancreas or jugular vein on day 7. Intrapancreatic, but not intravenous, hBMMSC injection significantly reduced blood glucose levels on day 28 compared with vehicle injection by the same route. This glucose-lowering effect was not induced by intrapancreatic injection of human fibroblasts as the xenograft control. Intrapancreatically injected fluorescence-labeled hBMMSCs were observed in the intra- and extra-lobular spaces of the pancreas, and intravenously injected cells were in the lung region, although the number of cells mostly decreased within 2 weeks of injection. For hBMMSCs injected twice into the pancreatic region on days 7 and 28, the injected mice had further reduced blood glucose to borderline diabetic levels on day 56. Animals injected with hBMMSCs twice exhibited increases in the plasma insulin level, number and size of islets, insulin-positive proportion of the total pancreas area, and intensity of insulin staining compared with vehicle-injected animals. We found a decrease of Iba1-positive cells in islets and an increase of CD206-positive cells in both the endocrine and exocrine pancreas. The hBMMSC injection also reduced the number of CD40-positive cells merged with glucagon immunoreactions in the islets. These results suggest that intrapancreatic injection may be a better delivery route of hBMMSCs for the treatment of type 1 diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental/terapia , Hiperglicemia/terapia , Macrófagos/imunologia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Diabetes Mellitus Experimental/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estreptozocina
10.
Am J Respir Crit Care Med ; 167(10): 1416-26, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12738599

RESUMO

The natural anticoagulant-activated protein C may inhibit inflammation and fibrosis in the lung. Platelet-derived growth factor is involved in the pathogenesis of lung fibrosis. This study assessed the effect of activated protein C on platelet-derived growth factor expression in human cell lines and in an in vivo model of lung fibrosis. Activated protein C significantly inhibited the secretion and expression of platelet-derived growth factor in human lung cell lines, primary bronchial epithelial cells, and macrophages. In vitro studies also showed that the endothelial activated protein C receptor is expressed by lung epithelial cells and macrophages, and that this receptor and the proteolytic activity of activated protein are implicated in the inhibition of platelet-derived growth factor expression. In the in vivo model of lung fibrosis, intratracheal administration of activated protein C decreased the expression of platelet-derived growth factor and suppressed the development of lung fibrosis. Concomitant intratracheal administration of activated protein C and anti-endothelial activated protein C receptor or anti-platelet-derived growth factor suppressed the inhibitory activity of activated protein C in vivo. In brief, this study describes a novel biological function of activated protein C that may further explain its inhibitory activity on lung inflammation and fibrosis.


Assuntos
Fatores de Coagulação Sanguínea/farmacologia , Pulmão/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/efeitos dos fármacos , Fibrose Pulmonar/patologia , Análise de Variância , Animais , Sequência de Bases , Bleomicina , Fatores de Coagulação Sanguínea/genética , Northern Blotting , Células Cultivadas , DNA Complementar/análise , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Feminino , Regulação da Expressão Gênica , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Fator de Crescimento Derivado de Plaquetas/fisiologia , Probabilidade , Fibrose Pulmonar/tratamento farmacológico , Distribuição Aleatória , Receptores de Superfície Celular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA