Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Scand J Gastroenterol ; 59(6): 737-741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563432

RESUMO

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver condition worldwide. There is an urgent need to develop new biomarkers to assess disease severity and to define patients with a progressive phenotype. Activin A is a new promising biomarker with conflicting results about liver fibrosis. In this study we investigate levels of Activin A in patients with biopsy proven MASLD. We assess levels of Activin A in regard to fibrosis stage and genetic variant I148M in the patatin-like phospholipase domain-containing protein 3 (PNPLA3). METHODS: Activin A levels were assessed in plasma samples from patients with biopsy-proven MASLD in a cross-sectional study. All patients were clinically evaluated and the PNPLA3 I148M genotype of the cohort was assessed. FINDINGS: 41 patients were included and 27% of these had advanced fibrosis. In MASLD patients with advanced fibrosis, Activin A levels was higher (p < 0.001) and could classify advanced fibrosis with an AUROC for activin A of 0.836 (p < 0.001). Patients homozygous for PNPLA3 I148M G/G had higher levels of activin A than non-homozygotes (p = 0.027). CONCLUSIONS: Circulating activin A levels were associated with advanced fibrosis and could be a potential blood biomarker for identifying advanced fibrosis in MASLD. Patients with the risk genotype PNPLA3 I148M G/G had higher levels of activin A proposing activin A as a contributor of the transition from simple steatosis to a fibrotic phenotype.


Assuntos
Ativinas , Biomarcadores , Fígado Gorduroso , Lipase , Cirrose Hepática , Proteínas de Membrana , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/sangue , Feminino , Pessoa de Meia-Idade , Lipase/genética , Lipase/sangue , Cirrose Hepática/genética , Cirrose Hepática/sangue , Estudos Transversais , Ativinas/sangue , Ativinas/genética , Biomarcadores/sangue , Adulto , Fígado Gorduroso/genética , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Idoso , Genótipo , Fígado/patologia , Índice de Gravidade de Doença , Aciltransferases , Fosfolipases A2 Independentes de Cálcio
2.
BMC Gastroenterol ; 23(1): 454, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129794

RESUMO

BACKGROUND: Liver cirrhosis, the advanced stage of many chronic liver diseases, is associated with escalated risks of liver-related complications like decompensation and hepatocellular carcinoma (HCC). Morbidity and mortality in cirrhosis patients are linked to portal hypertension, sarcopenia, and hepatocellular carcinoma. Although conventional cirrhosis management centered on treating complications, contemporary approaches prioritize preemptive measures. This study aims to formulate novel blood- and imaging-centric methodologies for monitoring liver cirrhosis patients. METHODS: In this prospective study, 150 liver cirrhosis patients will be enrolled from three Swedish liver clinics. Their conditions will be assessed through extensive blood-based markers and magnetic resonance imaging (MRI). The MRI protocol encompasses body composition profile with Muscle Assement Score, portal flow assessment, magnet resonance elastography, and a abbreviated MRI for HCC screening. Evaluation of lifestyle, muscular strength, physical performance, body composition, and quality of life will be conducted. Additionally, DNA, serum, and plasma biobanking will facilitate future investigations. DISCUSSION: The anticipated outcomes involve the identification and validation of non-invasive blood- and imaging-oriented biomarkers, enhancing the care paradigm for liver cirrhosis patients. Notably, the temporal evolution of these biomarkers will be crucial for understanding dynamic changes. TRIAL REGISTRATION: Clinicaltrials.gov, registration identifier NCT05502198. Registered on 16 August 2022. Link: https://classic. CLINICALTRIALS: gov/ct2/show/NCT05502198 .


Assuntos
Carcinoma Hepatocelular , Doença Hepática Terminal , Hipertensão Portal , Neoplasias Hepáticas , Sarcopenia , Humanos , Bancos de Espécimes Biológicos , Biomarcadores , Caquexia/etiologia , Caquexia/complicações , Carcinoma Hepatocelular/epidemiologia , Hipertensão Portal/complicações , Hipertensão Portal/patologia , Cirrose Hepática/diagnóstico , Neoplasias Hepáticas/epidemiologia , Estudos Prospectivos , Qualidade de Vida , Sarcopenia/diagnóstico por imagem , Sarcopenia/etiologia
3.
PLoS One ; 16(12): e0261681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972146

RESUMO

Lipolysis and the release of fatty acids to supply energy fuel to other organs, such as between meals, during exercise, and starvation, are fundamental functions of the adipose tissue. The intracellular lipolytic pathway in adipocytes is activated by adrenaline and noradrenaline, and inhibited by insulin. Circulating fatty acids are elevated in type 2 diabetic individuals. The mechanisms behind this elevation are not fully known, and to increase the knowledge a link between the systemic circulation and intracellular lipolysis is key. However, data on lipolysis and knowledge from in vitro systems have not been linked to corresponding in vivo data and knowledge in vivo. Here, we use mathematical modelling to provide such a link. We examine mechanisms of insulin action by combining in vivo and in vitro data into an integrated mathematical model that can explain all data. Furthermore, the model can describe independent data not used for training the model. We show the usefulness of the model by simulating new and more challenging experimental setups in silico, e.g. the extracellular concentration of fatty acids during an insulin clamp, and the difference in such simulations between individuals with and without type 2 diabetes. Our work provides a new platform for model-based analysis of adipose tissue lipolysis, under both non-diabetic and type 2 diabetic conditions.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Ácidos Graxos/metabolismo , Lipólise/fisiologia , Biologia de Sistemas , Simulação por Computador , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Diabetes Mellitus Tipo 2/sangue , Ácidos Graxos/sangue , Humanos , Técnicas In Vitro , Insulina/metabolismo , Resistência à Insulina , Modelos Estatísticos , Modelos Teóricos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Software , Triglicerídeos/metabolismo , Incerteza
4.
PLoS One ; 8(4): e59725, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565163

RESUMO

The insulin receptor substrate-1 (IRS1) is phosphorylated on serine 307 (human sequence, corresponding to murine serine 302) in response to insulin as part of a feedback loop that controls IRS1 phosphorylation on tyrosine residues by the insulin receptor. This in turn directly affects downstream signaling and is in human adipocytes implicated in the pathogenesis of insulin resistance and type 2 diabetes. The phosphorylation is inhibited by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR) in complex with raptor (mTORC1). The mTORC1-downstream p70 ribosomal protein S6 kinase (S6K1), which is activated by insulin, can phosphorylate IRS1 at serine 307 in vitro and is considered the physiological protein kinase. Because the IRS1 serine 307-kinase catalyzes a critical step in the control of insulin signaling and constitutes a potential target for treatment of insulin resistance, it is important to know whether S6K1 is the physiological serine 307-kinase or not. We report that, by several criteria, S6K1 does not phosphorylate IRS1 at serine 307 in response to insulin in intact human primary adipocytes: (i) The time-courses for phosphorylation of S6K1 and its phosphorylation of S6 are not compatible with the phosphorylation of IRS1 at serine 307; (ii) A dominant-negative construct of S6K1 inhibits the phosphorylation of S6, without effect on the phosphorylation of IRS1 at serine 307; (iii) The specific inhibitor of S6K1 PF-4708671 inhibits the phosphorylation of S6, without effect on phosphorylation of IRS1 at serine 307. mTOR-immunoprecipitates from insulin-stimulated adipocytes contains an unidentified protein kinase specific for phosphorylation of IRS1 at serine 307, but it is not mTOR or S6K1.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Insulina/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Catálise , Humanos , Imidazóis/farmacologia , Proteínas Substratos do Receptor de Insulina/química , Dados de Sequência Molecular , Mutação , Peptídeos/química , Fosforilação/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA