Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Diabetes ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137110

RESUMO

We postulated that T2D predisposes to exocrine pancreatic diseases through (epi)genetic mechanisms. We explored the methylome (methylationEPIC arrays) of the exocrine pancreas of 141 donors, assessing the impact of T2D. Epigenome-wide association study (EWAS) for T2D identified a hypermethylation in an enhancer of the Pancreatic-Lipase-Related-Protein 1 (PNLIPRP1) gene, associated with decreased PNLIPRP1 expression. PNLIPRP1 null variants (in 191K participants of the UKbiobank) associated with elevated glycemia and LDL-cholesterol. Mendelian Randomisation using 2.5M SNP OmniArrays in 111 donors evidenced that T2D was causal of PNLIPRP1 hypermethylation, which was causal for LDL-cholesterol. Further AR42J rat exocrine cell studies demonstrated that Pnliprp1 knockdown induced acinar-to-ductal metaplasia, a known pre-pancreatic cancer state, and increased cholesterol levels, reversible with statin. This (epi)genetic study suggests a role for PNLIPRP1 in human metabolism and on exocrine pancreas function with potential implications for pancreatic diseases.

2.
Sci Rep ; 14(1): 16559, 2024 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020093

RESUMO

NSG mice are among the most immunodeficient mouse model being used in various scientific branches. In diabetelogical research diabetic NSG mice are an important asset as a xenotransplantation model for human pancreatic islets or pluripotent stem cell-derived islets. The treatment with the beta cell toxin streptozotocin is the standard procedure for triggering a chemically induced diabetes. Surprisingly, little data has been published about the reproducibility, stress and animal suffering in these NSG mice during diabetes induction. The 3R rules, however, are a constant reminder that existing methods can be further refined to minimize suffering. In this pilot study the dose-response relationship of STZ in male NSG mice was investigated and additionally animal suffering was charted by applying the novel 'Relative Severity Assessment' algorithm. By this we successfully explored an STZ dose that reliably induced diabetes while reduced stress and pain to the animals to a minimum using evidence-based and objective parameters rather than criteria that might be influenced by human bias.


Assuntos
Diabetes Mellitus Experimental , Estreptozocina , Animais , Masculino , Camundongos , Relação Dose-Resposta a Droga , Modelos Animais de Doenças , Projetos Piloto , Humanos , Camundongos Endogâmicos NOD , Transplante das Ilhotas Pancreáticas , Índice de Gravidade de Doença
3.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163462

RESUMO

The LEW.1AR1-iddm rat is an animal model of human type 1 diabetes (T1D). Previously, we have shown that combination with anti-TCR/anti-TNF-α antibody-based therapy re-established normoglycemia and increased proteinic arginine-dimethylation in the spleen, yet not in the pancreas. High blood glucose is often associated with elevated formation of advanced glycation end-products (AGEs) which act via their receptor (RAGE). Both anti-TCR and anti-TNF-α are inhibitors of RAGE. The aim of the present work was to investigate potential biochemical changes of anti-TCR/anti-TNF-α therapy in the LEW.1AR1-iddm rat. We determined by stable-isotope dilution gas chromatography-mass spectrometry (GC-MS) the content of free and proteinic AGEs and the Nε-monomethylation of lysine (Lys) residues in proteins of pancreas, kidney, liver, spleen and lymph nodes of normoglycemic control (ngCo, n = 6), acute diabetic (acT1D, n = 6), chronic diabetic (chT1D, n = 4), and cured (cuT1D, n = 4) rats after anti-TCR/anti-TNF-α therapy. Analyzed biomarkers included Lys and its metabolites Nε-carboxymethyl lysine (CML), furosine and Nε-monomethyl lysine (MML). Other amino acids were also determined. Statistical methods including ANOVA, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to evaluate the effects. Most statistical differences between the study groups were observed for spleen, pancreas and kidney, with liver and lymph nodes showing no such differences. In the pancreas, the groups differed with respect to proteinic furosine (p = 0.0289) and free CML (p = 0.0023). In the kidneys, the groups differed with respect to proteinic furosine (p = 0.0076) and CML (p = 0.0270). In the spleen, group differences were found for proteinic furosine (p = 0.0114) and free furosine (p = 0.0368), as well as for proteinic CML (p = 0.0502) and proteinic MML (p = 0.0191). The acT1D rats had lower furosine, CML and MML levels in the spleen than the rats in all other groups. This observation corresponds to the lower citrullination levels previously measured in these rats. PCA revealed diametric associations between PC1 and PC2 for spleen (r = -0.8271, p < 0.0001) compared to pancreas (r = 0.5805, p = 0.0073) and kidney (r = 0.8692, p < 0.0001). These findings underscore the importance of the spleen in this animal model of human T1D. OPLS-DA showed that in total sixteen amino acids differed in the experimental groups.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Diabetes Mellitus Tipo 1/tratamento farmacológico , Lisina/análogos & derivados , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Rim/química , Fígado/química , Linfonodos/química , Lisina/análise , Masculino , Pâncreas/química , Ratos , Ratos Endogâmicos Lew , Baço/química
4.
Biochim Biophys Acta Mol Basis Dis ; 1867(10): 166199, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34144091

RESUMO

During diabetes development insulin production and glucose-stimulated insulin secretion (GSIS) are defective due to inflammation-related, yet not fully understood mechanisms. MCPIP1 (monocyte chemotactic protein-induced protein-1) is a strong regulator of inflammation, and acts predominantly as a specific RNase. The impact of MCPIP1 on insulin secretory capacity is unknown. We show that the expression of the ZC3H12A gene, which encodes MCPIP1, was induced by T1DM- and by T2DM-simulating conditions, with a stronger effect of cytokines. The number of MCPIP1-positive pancreatic islet-cells, including beta-cells, was significantly higher in diabetic compared to nondiabetic individuals. In the 3'UTR regions of mRNAs coding for Pdx1 (pancreatic and duodenal homeobox 1), FoxO1 (forkhead box protein O1), and of a novel regulator of insulin handling, Grp94 (glucose-regulated protein 94), MCPIP1-target structures were detected. Overexpression of the wild type MCPIP1wt, but not of the mutant MCPIP1D141N (lacking the RNase activity), decreased the expression of genes involved in insulin production and GSIS. Additionally INS1-E-MCPIP1wt cells exhibited a higher Ire1 (inositol-requiring enzyme 1) expression. MCPIP1wt overexpression blunted GSIS and glucose-mediated calcium influx with no deleterious effects on glucose uptake or glucokinase activity. We identify MCPIP1 as a new common link between diabetogenic conditions and beta-cell failure. MCPIP1 may serve as an interesting target for novel beta-cell protective approaches.


Assuntos
Diabetes Mellitus/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ribonucleases/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas/fisiologia , Animais , Cálcio/metabolismo , Linhagem Celular , Citocinas/metabolismo , Diabetes Mellitus/patologia , Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/patologia , RNA Mensageiro/metabolismo , Ratos
5.
J Mol Med (Berl) ; 98(8): 1125-1137, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32607871

RESUMO

Proinflammatory cytokines released from the pancreatic islet immune cell infiltrate in type 1 diabetes (T1D) cause insulinopenia as a result of severe beta cell loss due to apoptosis. Diabetes prevention strategies targeting different cytokines with antibodies in combination with a T cell antibody, anti-TCR, have been assessed for therapy success in the LEW.1AR1-iddm (IDDM) rat, an animal model of human T1D. Immediately after diabetes manifestation, antibody combination therapies were initiated over 5 days with anti-TNF-α (tumour necrosis factor), anti-IL-1ß (interleukin), or anti-IFN-γ (interferon) together with anti-TCR for the reversal of the diabetic metabolic state in the IDDM rat. Anti-TCR alone showed only a very limited therapy success with respect to a reduction of immune cell infiltration and beta cell mass regeneration. Anti-TCR combinations with anti-IL-1ß or anti-IFN-γ were also not able to abolish the increased beta cell apoptosis rate and the activated immune cell infiltrate leading to a permanent beta cell loss. In contrast, all anti-TCR combinations with anti-TNF-α provided sustained therapy success over 60 to 360 days. The triple combination of anti-TCR with anti-TNF-α plus anti-IL-1ß was most effective in regaining sustained normoglycaemia with an intact islet structure in a completely infiltration-free pancreas and with a normal beta cell mass. Besides the triple combination, the double antibody combination of anti-TCR with anti-TNF-α proved to be the most suited therapy for reversal of the T1D metabolic state due to effective beta cell regeneration in an infiltration free pancreas. KEY MESSAGES: Anti-TCR is a cornerstone in combination therapy for autoimmune diabetes reversal. The combination of anti-TCR with anti-TNF-α was most effective in reversing islet immune cell infiltration. Anti-TCR combined with anti-IL-1ß was not effective in this respect. The combination of anti-TCR with anti-TNF-α showed a sustained effect over 1 year.


Assuntos
Anticorpos Monoclonais/farmacologia , Citocinas/antagonistas & inibidores , Diabetes Mellitus Tipo 1/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Diabetes Mellitus Tipo 1/etiologia , Gerenciamento Clínico , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ratos , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Linfócitos T/metabolismo
6.
BMC Med ; 18(1): 33, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32106855

RESUMO

BACKGROUND: The cytokine IL-17 is a key player in autoimmune processes, while the cytokine IL-6 is responsible for the chronification of inflammation. However, their roles in type 1 diabetes development are still unknown. METHODS: Therefore, therapies for 5 days with anti-IL-17A or anti-IL-6 in combination with a T cell-specific antibody, anti-TCR, or in a triple combination were initiated immediately after disease manifestation to reverse the diabetic metabolic state in the LEW.1AR1-iddm (IDDM) rat, a model of human type 1 diabetes. RESULTS: Monotherapies with anti-IL-6 or anti-IL-17 showed no sustained anti-diabetic effects. Only the combination therapy of anti-TCR with anti-IL-6 or anti-IL-17 at starting blood glucose concentrations up to 12 mmol/l restored normoglycaemia. The triple antibody combination therapy was effective even up to very high initial blood glucose concentrations (17 mmol/l). The ß cell mass was raised to values of around 6 mg corresponding to those of normoglycaemic controls. In parallel, the apoptosis rate of ß cells was reduced and the proliferation rate increased as well as the islet immune cell infiltrate was strongly reduced in double and abolished in triple combination therapies. CONCLUSIONS: The anti-TCR combination therapy with anti-IL-17 preferentially raised the ß cell mass as a result of ß cell proliferation while anti-IL-6 strongly reduced ß cell apoptosis and the islet immune cell infiltrate with a modest increase of the ß cell mass only. The triple combination therapy achieved both goals in a complimentary anti-autoimmune and anti-inflammatory action resulting in sustained normoglycaemia with normalized serum C-peptide concentrations.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Interleucina-17/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Indução de Remissão/métodos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Ratos , Ratos Endogâmicos Lew
7.
Diabetes ; 69(4): 624-633, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31974139

RESUMO

Approximately 10% of patients with type 2 diabetes suffer from latent autoimmune diabetes in adults (LADA). This study provides a systematic assessment of the pathology of the endocrine pancreas of patients with LADA and for comparison in a first rat model mimicking the characteristics of patients with LADA. Islets in human and rat pancreases were analyzed by immunohistochemistry for immune cell infiltrate composition, by in situ RT-PCR and quantitative real-time PCR of laser microdissected islets for gene expression of proinflammatory cytokines, the proliferation marker proliferating cell nuclear antigen (PCNA), the anti-inflammatory cytokine interleukin (IL) 10, and the apoptosis markers caspase 3 and TUNEL as well as insulin. Human and rat LADA pancreases showed differences in areas of the pancreas with respect to immune cell infiltration and a changed ratio between the number of macrophages and CD8 T cells toward macrophages in the islet infiltrate. Gene expression analyses revealed a changed ratio due to an increase of IL-1ß and a decrease of tumor necrosis factor-α. IL-10, PCNA, and insulin expression were increased in the LADA situation, whereas caspase 3 gene expression was reduced. The analyses into the underlying pathology in human as well as rat LADA pancreases provided identical results, allowing the conclusion that LADA is a milder form of autoimmune diabetes in patients of an advanced age.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Diabetes Autoimune Latente em Adultos/patologia , Pâncreas/patologia , Adulto , Idoso , Animais , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos
8.
Amino Acids ; 52(1): 103-110, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31832896

RESUMO

The LEW.1AR1-iddm rat is an animal model of human type 1 diabetes (T1D). We determined by GC-MS the extent of asymmetric dimethylation (prADMA) and citrullination (prCit) of L-arginine residues in organ proteins (pr) of normoglycaemic control (ngCo, n = 6), acutely diabetic (acT1D, n = 6), chronically diabetic (chT1D, n = 4), and cured (cuT1D, n = 4) rats after anti-TCR/anti-TNF-α therapy. Pancreatic prCit and prADMA did not differ between the groups but were correlated (r = 0.728, P = 0.0003, n = 20). acT1D rats had lower prCit levels in spleen and kidney than ngCo rats. cuT1D rats had higher prADMA levels than chT1D rats only in the spleen. Combination therapy re-established normoglycaemia and increased prADMA in the spleen without altering pancreatic prADMA and prCit. Western blotting demonstrated the presence of different prADMA pattern, especially an ≈ 50-kDa prADMA in spleen and pancreas, and an ≈ 25-kDa prADMA in the pancreas only, with the kidney showing only a very faint and small prADMA. Besides the changes in the pancreas during different metabolic states, the spleen may play a stronger role for the recognition of metabolic changes in T1D than thought thus far.


Assuntos
Anticorpos/farmacologia , Arginina/genética , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Animais , Anticorpos/imunologia , Glicemia/genética , Citrulinação/efeitos dos fármacos , Citrulinação/genética , Metilação de DNA/genética , Metilação de DNA/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Humanos , Masculino , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptores de Antígenos de Linfócitos T alfa-beta/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Baço/efeitos dos fármacos , Baço/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
9.
Cell Death Dis ; 10(1): 29, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631045

RESUMO

The autoimmune-mediated beta-cell death in type 1 diabetes (T1DM) is associated with local inflammation (insulitis). We examined the role of MCPIP1 (monocyte chemotactic protein-induced protein 1), a novel cytokine-induced antiinflammatory protein, in this process. Basal MCPIP1 expression was lower in rat vs. human islets and beta-cells. Proinflammatory cytokines stimulated MCPIP1 expression in rat and human islets and in insulin-secreting cells. Moderate overexpression of MCPIP1 protected insulin-secreting INS1E cells against cytokine toxicity by a mechanism dependent on the presence of the PIN/DUB domain in MCPIP1. It also reduced cytokine-induced Chop and C/ebpß expression and maintained MCL-1 expression. The shRNA-mediated suppression of MCPIP1 led to the potentiation of cytokine-mediated NFκB activation and cytokine toxicity in human EndoC-ßH1 beta-cells. MCPIP1 expression was very high in infiltrated beta-cells before and after diabetes manifestation in the LEW.1AR1-iddm rat model of human T1DM. The extremely high expression of MCPIP1 in clonal beta-cells was associated with a failure of the regulatory feedback-loop mechanism, ER stress induction and high cytokine toxicity. In conclusion, our data indicate that the expression level of MCPIP1 affects the susceptibility of insulin-secreting cells to cytokines and regulates the mechanism of beta-cell death in T1DM.


Assuntos
Citocinas/toxicidade , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Expressão Gênica , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Transfecção
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(4): 452-465, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30639735

RESUMO

The mitochondrial phospholipid cardiolipin (CL) has been implicated with mitochondrial morphology, function and, more recently, with cellular proliferation. Tafazzin, an acyltransferase with key functions in CL remodeling determining actual CL composition, affects mitochondrial oxidative phosphorylation. Here, we show that the CRISPR-Cas9 mediated knock-out of tafazzin (Taz) is associated with substantial alterations of various mitochondrial and cellular characteristics in C6 glioma cells. The knock-out of tafazzin substantially changed the profile of fatty acids incorporated in CL and the distribution of molecular CL species. Taz knock-out was further associated with decreased capacity of oxidative phosphorylation that mainly originates from impaired complex I associated energy metabolism in C6 glioma cells. The lack of tafazzin switched energy metabolism from oxidative phosphorylation to glycolysis indicated by lower respiration rates, membrane potential and higher levels of mitochondria-derived reactive oxygen species but keeping the cellular ATP content unchanged. The impact of tafazzin on mitochondria was also indicated by altered morphology and arrangement in tafazzin deficient C6 glioma cells. In the cells we observed tafazzin-dependent changes in the distribution of cellular fatty acids as an indication of altered lipid metabolism as well as in stability/morphology. Most impressive is the dramatic reduction in cell proliferation in tafazzin deficient C6 glioma cells that is not mediated by reactive oxygen species. Our data clearly indicate that defects in CL phospholipid remodeling trigger a cascade of events including modifications in CL linked to subsequent alterations in mitochondrial and cellular functions.


Assuntos
Cardiolipinas/metabolismo , Glioma/metabolismo , Mitocôndrias/metabolismo , Fatores de Transcrição/genética , Aciltransferases , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Metabolismo Energético , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Glioma/genética , Glicólise , Fosforilação Oxidativa , Ratos , Fatores de Transcrição/metabolismo
11.
Diabetes ; 67(11): 2305-2318, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150306

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease where pancreatic ß-cells are destroyed by islet-infiltrating T cells. Although a role for ß-cell defects has been suspected, ß-cell abnormalities are difficult to demonstrate. We show a ß-cell DNA damage response (DDR), presented by activation of the 53BP1 protein and accumulation of p53, in biopsy and autopsy material from patients with recently diagnosed T1D as well as a rat model of human T1D. The ß-cell DDR is more frequent in islets infiltrated by CD45+ immune cells, suggesting a link to islet inflammation. The ß-cell toxin streptozotocin (STZ) elicits DDR in islets, both in vivo and ex vivo, and causes elevation of the proinflammatory molecules IL-1ß and Cxcl10. ß-Cell-specific inactivation of the master DNA repair gene ataxia telangiectasia mutated (ATM) in STZ-treated mice decreases the expression of proinflammatory cytokines in islets and attenuates the development of hyperglycemia. Together, these data suggest that ß-cell DDR is an early event in T1D, possibly contributing to autoimmunity.


Assuntos
Dano ao DNA/imunologia , Diabetes Mellitus Tipo 1/imunologia , Inflamação/imunologia , Células Secretoras de Insulina/imunologia , Ilhotas Pancreáticas/imunologia , Adulto , Animais , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Humanos , Inflamação/patologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
12.
J Mol Med (Berl) ; 96(8): 831-843, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29967942

RESUMO

Impaired salt and water absorption is a hallmark of diarrhea in IBD. In the present study, the therapeutic effect of continuous anti-TNFα treatment on the progression of inflammation and colonic transport dysfunction during chronic dextran sulfate sodium (DSS)-induced colitis was investigated. Chronic colitis was induced by three DSS exposure cycles. Mice received TNFα monoclonal antibody treatment twice weekly after the end of the first 5-day DSS drinking period. Mice developed chronic DSS-induced colitis characterized by a typical immune cell infiltration composed of CD3+ T cells and CD68+ macrophages, both expressing high levels of the pro-inflammatory cytokines IL-1ß and TNFα, a loss of NHE3 and PDZK1 in the brush border region of the absorptive enterocyte and a decrease of colonic fluid absorption in vivo, measured by colonic single pass perfusion. Concomitant anti-TNFα treatment resulted in a significant reduction of mucosal immune cell infiltration and expression of the pro-inflammatory cytokines IL-1ß and TNFα. It also resulted in a normalization of NHE3-mediated fluid absorption and a restoration of NHE3 and PDZK1 location in the apical and subapical region of the enterocytes. Here, we show for the first time that in this chemically induced murine colitis model, anti-TNFα treatment significantly decreased inflammatory activity, improved mucosal integrity and restored transport function despite an ongoing inflammatory insult. Anti-TNFα treatment may therefore be beneficial in patients with IBD even in spite of an absence of complete mucosal healing. KEY MESSAGES: Chronic DSS treatment caused a loss of NHE3 and PDZK1 in the brush border region of the absorptive enterocyte and decreases colonic fluid absorption. In DSS-induced colitis, anti-TNFα treatment reduced mucosal immune cell infiltration and expression of the pro-inflammatory cytokines IL-1ß and TNFα. In DSS-induced colitis, anti-TNFα treatment normalized NHE3-mediated fluid absorption and restored NHE3 and PDZK1 location in the enterocytes. In DSS-induced colitis, anti-TNFα treatment decreased inflammatory activity, improved mucosal integrity, and restored transport function.


Assuntos
Anticorpos Monoclonais/farmacologia , Colite/etiologia , Colite/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Colite/tratamento farmacológico , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Feminino , Imunofluorescência , Absorção Gastrointestinal/efeitos dos fármacos , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
13.
Kidney Int ; 94(4): 741-755, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29935951

RESUMO

Severe ischemia reperfusion injury (IRI) results in rapid complement activation, acute kidney injury and progressive renal fibrosis. Little is known about the roles of the C5aR1 and C5aR2 complement receptors in IRI. In this study C5aR1-/- and C5aR2-/- mice were compared to the wild type in a renal IRI model leading to renal fibrosis. C5a receptor expression, kidney morphology, inflammation, and fibrosis were measured in different mouse strains one, seven and 21 days after IRI. Renal perfusion was evaluated by functional magnetic resonance imaging. Protein abundance and phosphorylation were assessed with high content antibody microarrays and Western blotting. C5aR1 and C5aR2 were increased in damaged tubuli and even more in infiltrating leukocytes after IRI in kidneys of wild-type mice. C5aR1-/- and C5aR2-/- animals developed less IRI-induced inflammation and showed better renal perfusion than wild-type mice following IRI. C5aR2-/- mice, in particular, had enhanced tubular and capillary regeneration with less renal fibrosis. Anti-inflammatory IL-10 and the survival/growth kinase AKT levels were especially high in kidneys of C5aR2-/- mice following IRI. LPS caused bone marrow-derived macrophages from C5aR2-/- mice to release IL-10 and to express the stress response enzyme heme oxygenase-1. Thus, C5aR1 and C5aR2 have overlapping actions in which the kidneys of C5aR2-/- mice regenerate better than those in C5aR1-/- mice following IRI. This is mediated, at least in part, by differential production of IL-10, heme oxygenase-1 and AKT.


Assuntos
Heme Oxigenase-1/metabolismo , Interleucina-10/metabolismo , Túbulos Renais/patologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor da Anafilatoxina C5a/genética , Traumatismo por Reperfusão/genética , Animais , Proliferação de Células/genética , Células Cultivadas , Células Epiteliais , Fibrose , Inflamação/etiologia , Rim/diagnóstico por imagem , Túbulos Renais/metabolismo , Túbulos Renais/fisiopatologia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Imagem de Perfusão , Fosforilação , Fatores de Proteção , Receptor da Anafilatoxina C5a/metabolismo , Regeneração/genética , Traumatismo por Reperfusão/complicações , Regulação para Cima
14.
Diabetologia ; 61(3): 641-657, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29185012

RESUMO

AIMS/HYPOTHESIS: Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium ( www.imidia.org ) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP). METHODS: Affymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells. RESULTS: Comparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes. CONCLUSIONS/INTERPRETATION: These studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.


Assuntos
Bancos de Espécimes Biológicos , Diabetes Mellitus Tipo 2/metabolismo , Biologia de Sistemas/métodos , Doadores de Tecidos , Transcriptoma/genética , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional , Feminino , Humanos , Masculino , Pancreatectomia
15.
Gastroenterology ; 150(1): 229-241.e5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26404950

RESUMO

BACKGROUND & AIMS: Biliary atresia (BA) is a rare disease in infants, with unknown mechanisms of pathogenesis. It is characterized by hepatobiliary inflammatory, progressive destruction of the biliary system leading to liver fibrosis, and deterioration of liver function. Interleukin (IL) 17A promotes inflammatory and autoimmune processes. We studied the role of IL17A and cells that produce this cytokine in a mouse model of BA and in hepatic biopsy samples from infants with BA. METHODS: We obtained peripheral blood and liver tissue specimens from 20 patients with BA, collected at the time of Kasai portoenterostomy, along with liver biopsies from infants without BA (controls). The tissue samples were analyzed by reverse transcription quantitative polymerase chain reaction (PCR), in situ PCR, and flow cytometry analyses. BA was induced in balb/cAnNCrl mice by rhesus rotavirus infection; uninfected mice were used as controls. Liver tissues were collected from mice and analyzed histologically and by reverse transcriptase PCR; leukocytes were isolated, stimulated, and analyzed by flow cytometry and PCR analyses. Some mice were given 3 intraperitoneal injections of a monoclonal antibody against IL17 or an isotype antibody (control). RESULTS: Livers from rhesus rota virus-infected mice with BA had 7-fold more Il17a messenger RNA than control mice (P = .02). γδ T cells were the exclusive source of IL17; no T-helper 17 cells were detected in livers of mice with BA. The increased number of IL17a-positive γδ T cells liver tissues of mice with BA was associated with increased levels of IL17A, IL17F, retinoid-orphan-receptor C, C-C chemokine receptor 6, and the IL23 receptor. Mice that were developing BA and given antibodies against IL17 had lower levels of liver inflammation and mean serum levels of bilirubin than mice receiving control antibodies (191 µmol/L vs 78 µmol/L, P = .002). Liver tissues from patients with BA had 4.6-fold higher levels of IL17 messenger RNA than control liver tissues (P = .02). CONCLUSIONS: In livers of mice with BA, γδ T cells produce IL17, which is required for inflammation and destruction of the biliary system. IL17 is up-regulated in liver tissues from patients with BA, compared with controls, and might serve as a therapeutic target.


Assuntos
Atresia Biliar/metabolismo , Atresia Biliar/patologia , Citocinas/metabolismo , Interleucina-17/metabolismo , Fígado/patologia , Linfócitos T/metabolismo , Animais , Atresia Biliar/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Feminino , Hepatite/patologia , Hepatite/fisiopatologia , Humanos , Imuno-Histoquímica , Lactente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/metabolismo , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas , Regulação para Cima
16.
Diabetes ; 64(8): 2880-91, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25784545

RESUMO

Anti-tumor necrosis factor-α (TNF-α) therapy (5 mg/kg body weight), alone or combined with the T-cell-specific antibody anti-T-cell receptor (TCR) (0.5 mg/kg body weight), was performed over 5 days immediately after disease manifestation to reverse the diabetic metabolic state in the LEW.1AR1-iddm rat, an animal model of human type 1 diabetes. Only combination therapy starting at blood glucose concentrations below 15 mmol/L restored normoglycemia and normalized C-peptide. Increased ß-cell proliferation and reduced apoptosis led to a restoration of ß-cell mass along with an immune cell infiltration-free pancreas 60 days after the end of therapy. This combination of two antibodies, anti-TCR/CD3, as a cornerstone compound in anti-T-cell therapy, and anti-TNF-α, as the most prominent and effective therapeutic antibody in suppressing TNF-α action in many autoimmune diseases, was able to reverse the diabetic metabolic state. With increasing blood glucose concentrations during the disease progression, however, the proapoptotic pressure on the residual ß-cell mass increased, ultimately reaching a point where the reservoir of the surviving ß-cells was insufficient to allow a restoration of normal ß-cell mass through regeneration. The present results may open a therapeutic window for reversal of diabetic hyperglycemia in patients, worthwhile of being tested in clinical trials.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Glicemia/metabolismo , Peptídeo C/sangue , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Insulina/sangue , Masculino , Ratos , Ratos Endogâmicos Lew
17.
J Mol Med (Berl) ; 92(7): 743-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24599515

RESUMO

UNLABELLED: The therapeutic capacity of an antibody directed against the T cell receptor (anti-TCR) of the TCR/CD3 complex alone or in combination with fingolimod (FTY720) to reverse the diabetic metabolic state through suppression of autoimmunity and stimulation of ß cell regeneration was analyzed in the LEW.1AR1-iddm (IDDM) rat, an animal model of human type 1 diabetes. Animals were treated with anti-TCR (0.5 mg/kg body weight for 5 days) monotherapy or in combination with fingolimod (1 mg/kg body weight for 40 days). Metabolic changes and ß cell morphology were analyzed before, immediately after, and 60 days after end of therapy. Both therapies were started early after disease manifestation and led to normoglycemia in parallel with an increase of the C-peptide concentration. Combination therapy increased the ß cell mass reaching a range of normoglycemic controls, decreased the apoptosis rate fivefold, and increased the proliferation rate threefold. Additionally, at 60 days after therapy, islets were virtually free of T cells, macrophages, and cytokine expression. In contrast, after anti-TCR monotherapy, ß cell mass remained low with an activated immune cell infiltrate. A concomitant fivefold increased ß cell apoptosis rate resulted in a complete loss of ß cells. Only combination therapy yielded sustained normoglycemia with full reversal of islet infiltration and restoration of pancreatic ß cell mass. KEY MESSAGE: Combination therapy of anti-TCR and fingolimod was effective in the reversal of T1D. Combination therapy increased the pancreatic ß cell mass to normoglycemic control levels. Combination therapy leads to a full reversal of pancreatic islet infiltration. Anti-TCR monotherapy did not abolish islet infiltration. Combination therapy was successful only immediately after diabetes manifestation.


Assuntos
Anticorpos/administração & dosagem , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Imunossupressores/administração & dosagem , Propilenoglicóis/administração & dosagem , Receptores de Antígenos de Linfócitos T/imunologia , Esfingosina/análogos & derivados , Animais , Proliferação de Células/efeitos dos fármacos , Citocinas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Quimioterapia Combinada , Cloridrato de Fingolimode , Hiperglicemia/imunologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/ultraestrutura , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Microscopia Eletrônica de Transmissão , Ratos , Esfingosina/administração & dosagem , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
18.
Inflamm Bowel Dis ; 20(3): 431-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24487272

RESUMO

BACKGROUND: Infection may trigger clinically overt mucosal inflammation in patients with predisposition for inflammatory bowel disease. However, the impact of particular enteropathogenic microorganisms is ill-defined. In this study, the influence of murine norovirus (MNV) infection on clinical, histopathological, and immunological features of mucosal inflammation in the IL10-deficient (Il10) mouse model of inflammatory bowel disease was examined. METHODS: C57BL/6J and C3H/HeJBir wild-type and Il10 mice kept under special pathogen-free conditions and devoid of clinical and histopathological signs of mucosal inflammation were monitored after MNV infection for structural and functional intestinal barrier changes by in situ MNV reverse transcription PCR, transgene reporter gene technology, histology, flux measurements, quantitative real-time PCR, immunohistology, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. In addition, the influence of the enteric microbiota was analyzed in MNV-infected germfree Il10 mice. RESULTS: Although MNV-infected wild-type mice remained asymptomatic, mucosal inflammation was noted in previously healthy Il10 mice 2 to 4 weeks after infection. MNV-induced changes in Il10 mice included increased paracellular permeability indicated by increased mucosal mannitol flux, reduced gene expression of tight junction molecules, and an enhanced rate of epithelial apoptosis. MNV-induced reduction of tight junction protein expression and inflammatory lesions were absent in germfree Il10 mice, whereas epithelial apoptosis was still observed. CONCLUSIONS: Despite its subclinical course in wild-type animals, MNV causes epithelial barrier disruption in Il10 animals representing a potent colitogenic stimulus that largely depends on the presence of the enteric microbiota. MNV might thus trigger overt clinical disease in individuals with a nonsymptomatic predisposition for inflammatory bowel disease by impairment of the intestinal mucosa.


Assuntos
Infecções por Caliciviridae/imunologia , Inflamação/imunologia , Interleucina-10/fisiologia , Microbiota , Mucosite/imunologia , Norovirus/patogenicidade , Animais , Apoptose , Western Blotting , Infecções por Caliciviridae/microbiologia , Infecções por Caliciviridae/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Inflamação/microbiologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosite/microbiologia , Mucosite/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Diabetologia ; 57(3): 512-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24310561

RESUMO

AIMS/HYPOTHESIS: Research on the pathogenesis of type 1 diabetes relies heavily on good animal models. The aim of this work was to study the translational value of animal models of type 1 diabetes to the human situation. METHODS: We compared the four major animal models of spontaneous type 1 diabetes, namely the NOD mouse, BioBreeding (BB) rat, Komeda rat and LEW.1AR1-iddm rat, by examining the immunohistochemistry and in situ RT-PCR of immune cell infiltrate and cytokine pattern in pancreatic islets, and by comparing findings with human data. RESULTS: After type 1 diabetes manifestation CD8(+) T cells, CD68(+) macrophages and CD4(+) T cells were observed as the main immune cell types with declining frequency, in infiltrated islets of all diabetic pancreases. IL-1ß and TNF-α were the main proinflammatory cytokines in the immune cell infiltrate in NOD mice, BB rats and LEW.1AR1-iddm rats, as well as in humans. The Komeda rat was the exception, with IFN-γ and TNF-α being the main cytokines. In addition, IL-17 and IL-6 and the anti-inflammatory cytokines IL-4, IL-10 and IL-13 were found in some infiltrating immune cells. Apoptotic as well as proliferating beta cells were observed in infiltrated islets. In healthy pancreases no proinflammatory cytokine expression was observed. CONCLUSIONS/INTERPRETATION: With the exception of the Komeda rat, the animal models mirror very well the situation in humans with type 1 diabetes. Thus animal models of type 1 diabetes can provide meaningful information on the disease processes in the pancreas of patients with type 1 diabetes.


Assuntos
Apoptose , Linfócitos B/patologia , Citocinas/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/patologia , Animais , Apoptose/imunologia , Linfócitos B/imunologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/imunologia , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Ratos , Ratos Endogâmicos BB , Ratos Endogâmicos Lew , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/metabolismo
20.
Eur J Pharm Sci ; 52: 206-14, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24284031

RESUMO

Hyper- and hypoglycaemias are known side effects of fluoroquinolone antibiotics, resulting in a number of fatalities. Fluoroquinolone-induced hypoglycaemias are due to stimulated insulin release by the inhibition of the KATP channel activity of the beta cell. Recently, it was found that fluoroquinolones were much less effective on metabolically intact beta cells than on open cell preparations. Thus the intracellular effects of gatifloxacin, moxifloxacin and ciprofloxacin were investigated by measuring NAD(P)H- and FAD-autofluorescence, the mitochondrial membrane potential, and the adenine nucleotide content of isolated pancreatic islets and beta cells. 100 µM of moxifloxacin abolished the NAD(P)H increase elicited by 20mM glucose, while gatifloxacin diminished it and ciprofloxacin had no significant effect. This pattern was also seen with islets from SUR1 Ko mice, which have no functional KATP channels. Moxifloxacin also diminished the glucose-induced decrease of FAD-fluorescence, which reflects the intramitochondrial production of reducing equivalents. Moxifloxacin, but not ciprofloxacin or gatifloxacin significantly reduced the effect of 20mM glucose on the ATP/ADP ratio. The mitochondrial hyperpolarization caused by 20mM glucose was partially antagonized by moxifloxacin, but not by ciprofloxacin or gatifloxacin. Ultrastructural analyses after 20 h tissue culture showed that all three compounds (at 10 and 100 µM) diminished the number of insulin secretory granules and that gatifloxacin and ciprofloxacin, but not moxifloxacin induced fission/fusion configurations of the beta cell mitochondria. In conclusion, fluoroquinolones affect the function of the mitochondria in pancreatic beta cells which may diminish the insulinotropic effect of KATP channel closure and contribute to the hyperglycaemic episodes.


Assuntos
Antibacterianos/farmacologia , Compostos Aza/farmacologia , Ciprofloxacina/farmacologia , Fluoroquinolonas/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Quinolinas/farmacologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Flavina-Adenina Dinucleotídeo/metabolismo , Gatifloxacina , Glucose/farmacologia , Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/fisiologia , Moxifloxacina , NADP/metabolismo , Receptores de Sulfonilureias/deficiência , Receptores de Sulfonilureias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA