Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 16204, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376756

RESUMO

Calcitonin gene related peptide (CGRP) expressing neurons in the parabrachial nucleus have been shown to encode danger. Through projections to the amygdala and other forebrain structures, they regulate food intake and trigger adaptive behaviors in response to threats like inflammation, intoxication, tumors and pain. Despite the fact that this danger-encoding neuronal population has been defined based on its CGRP expression, it is not clear if CGRP is critical for its function. It is also not clear if CGRP in other neuronal structures is involved in danger-encoding. To examine the role of CGRP in danger-related motivational responses, we used male and female mice lacking αCGRP, which is the main form of CGRP in the brain. These mice had no, or only very weak, CGRP expression. Despite this, they did not behave differently compared to wildtype mice when they were tested for a battery of danger-related responses known to be mediated by CGRP neurons in the parabrachial nucleus. Mice lacking αCGRP and wildtype mice showed similar inflammation-induced anorexia, conditioned taste aversion, aversion to thermal pain and pain-induced escape behavior, although it should be pointed out that the study was not powered to detect any possible differences that were minor or sex-specific. Collectively, our findings suggest that αCGRP is not necessary for many threat-related responses, including some that are known to be mediated by CGRP neurons in the parabrachial nucleus.


Assuntos
Anorexia/fisiopatologia , Comportamento Animal , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Condicionamento Clássico/fisiologia , Medo/psicologia , Neurônios/patologia , Dor/patologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Transtorno Alimentar Restritivo Evitativo , Ingestão de Alimentos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Motivação , Neurônios/metabolismo , Nociceptividade , Dor/metabolismo , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/patologia
2.
Immunity ; 54(2): 225-234.e6, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33476547

RESUMO

Microglia are activated in many neurological diseases and have been suggested to play an important role in the development of affective disorders including major depression. To investigate how microglial signaling regulates mood, we used bidirectional chemogenetic manipulations of microglial activity in mice. Activation of microglia in the dorsal striatum induced local cytokine expression and a negative affective state characterized by anhedonia and aversion, whereas inactivation of microglia blocked aversion induced by systemic inflammation. Interleukin-6 signaling and cyclooxygenase-1 mediated prostaglandin synthesis in the microglia were critical for the inflammation-induced aversion. Correspondingly, microglial activation led to a prostaglandin-dependent reduction of the excitability of striatal neurons. These findings demonstrate a mechanism by which microglial activation causes negative affect through prostaglandin-dependent modulation of striatal neurons and indicate that interference with this mechanism could milden the depressive symptoms in somatic and psychiatric diseases involving microglial activation.


Assuntos
Anedonia/fisiologia , Corpo Estriado/imunologia , Depressão/imunologia , Microglia/imunologia , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Células Cultivadas , Modelos Animais de Doenças , Humanos , Inflamação , Interleucina-6/metabolismo , Ativação de Macrófagos , Camundongos , Inflamação Neurogênica , Prostaglandinas/metabolismo
3.
J Clin Invest ; 128(7): 3160-3170, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29911992

RESUMO

It is critical for survival to assign positive or negative valence to salient stimuli in a correct manner. Accordingly, harmful stimuli and internal states characterized by perturbed homeostasis are accompanied by discomfort, unease, and aversion. Aversive signaling causes extensive suffering during chronic diseases, including inflammatory conditions, cancer, and depression. Here, we investigated the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice and a behavioral test in which mice avoid an environment that they have learned to associate with aversive stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain, and κ opioid receptor-induced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference or indifference toward the aversive stimuli. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were reexpressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in an MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.


Assuntos
Corpo Estriado/fisiologia , Motivação/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Benzazepinas/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Dopamina/fisiologia , Antagonistas de Dopamina/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pró-Opiomelanocortina/fisiologia , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/fisiologia , Recompensa
4.
Mol Phylogenet Evol ; 46(3): 890-6, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18226929

RESUMO

A segregating second locus, PgiC2, for the enzyme phosphoglucose isomerase (PGIC) is found in the grass sheep's fescue, Festuca ovina. We have earlier reported that a phylogenetic analysis indicates that PgiC2 has been horizontally transferred from the reproductively separated grass genus Poa. Here we extend our analysis to include intron and exon information on 27 PgiC sequences from 18 species representing five genera, and confirm our earlier finding. The origin of PgiC2 can be traced to a group of closely interrelated, polyploid and partially asexual Poa species. The sequence most similar to PgiC2 is found in Poa palustris with a divergence, based on synonymous substitutions, of only 0.67%. This value suggests that the transfer took place less than 600,000 years ago (late Pleistocene), at a time when most extant Poa and Festuca species already existed.


Assuntos
Festuca/genética , Transferência Genética Horizontal , Glucose-6-Fosfato Isomerase/genética , Proteínas de Plantas/genética , Poa/genética , Evolução Molecular , Festuca/classificação , Festuca/enzimologia , Dados de Sequência Molecular , Filogenia , Poa/classificação , Poa/enzimologia , Fatores de Tempo
5.
Proc Biol Sci ; 273(1585): 395-9, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16615204

RESUMO

In sheep's fescue, Festuca ovina, genes coding for the cytosolic enzyme phosphoglucose isomerase, PGIC, are not only found at the standard locus, PgiC1, but also at a segregating second locus, PgiC2. We have used PCR-based sequencing to characterize the molecular structure and evolution of five PgiC1 and three PgiC2 alleles in F. ovina. The three PgiC2 alleles were complex in that they carried two gene copies: either two active genes or one active and one pseudogene. All the PgiC2 sequences were very similar to each other but highly diverged from the five PgiC1 sequences. We also sequenced PgiC genes from several other grass species. Phylogenetic analysis of these sequences indicates that PgiC2 has introgressed into F. ovina from the distant genus Poa. Such an introgression may, for example, follow from a non-standard fertilization with more than one pollen grain, or a direct horizontal gene transfer mediated by a plant virus.


Assuntos
Evolução Molecular , Festuca/genética , Glucose-6-Fosfato Isomerase/genética , Alelos , Sequência de Bases , DNA de Plantas/química , DNA de Plantas/genética , Festuca/enzimologia , Genes de Plantas/genética , Variação Genética , Filogenia , Poa/genética , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA