Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 19(7): 2143-2145, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36633450

RESUMO

Degradation of macromolecules delivered to lysosomes by processes such as autophagy or endocytosis is crucial for cellular function. Lysosomes require more than 60 soluble hydrolases in order to catabolize such macromolecules. These soluble hydrolases are tagged with mannose6-phosphate (M6P) moieties in sequential reactions by the Golgi-resident GlcNAc-1-phosphotransferase complex and NAGPA/UCE/uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase), which allows their delivery to endosomal/lysosomal compartments through trafficking mediated by cation-dependent and -independent mannose 6-phosphate receptors (MPRs). We and others recently identified TMEM251 as a novel regulator of the M6P pathway via independent genome-wide genetic screening strategies. We renamed TMEM251 to LYSET (lysosomal enzyme trafficking factor) to establish nomenclature reflective to this gene's function. LYSET is a Golgi-localized transmembrane protein important for the retention of the GlcNAc-1-phosphotransferase complex in the Golgi-apparatus. The current understanding of LYSET's importance regarding human biology is 3-fold: 1) highly pathogenic viruses that depend on lysosomal hydrolase activity require LYSET for infection. 2) The presence of LYSET is critical for cancer cell proliferation in nutrient-deprived environments in which extracellular proteins must be catabolized. 3) Inherited pathogenic alleles of LYSET can cause a severe inherited disease which resembles GlcNAc-1-phosphotransferase deficiency (i.e., mucolipidosis type II).Abbreviations: GlcNAc-1-PT: GlcNAc-1-phosphotransferase; KO: knockout; LSD: lysosomal storage disorder; LYSET: lysosomal enzyme trafficking factor; M6P: mannose 6-phosphate; MPRs: mannose-6-phosphate receptors, cation-dependent or -independent; MBTPS1/site-1 protease: membrane bound transcription factor peptidase, site 1; MLII: mucolipidosis type II; WT: wild-type.


Assuntos
Mucolipidoses , Humanos , Mucolipidoses/genética , Mucolipidoses/metabolismo , Manose/metabolismo , Autofagia , Lisossomos/metabolismo , Hidrolases/metabolismo , Receptor IGF Tipo 2/metabolismo , Cátions/metabolismo , Fosfotransferases/metabolismo
2.
Science ; 378(6615): eabn5637, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36074822

RESUMO

Mammalian cells can generate amino acids through macropinocytosis and lysosomal breakdown of extracellular proteins, which is exploited by cancer cells to grow in nutrient-poor tumors. Through genetic screens in defined nutrient conditions, we characterized LYSET, a transmembrane protein (TMEM251) selectively required when cells consume extracellular proteins. LYSET was found to associate in the Golgi with GlcNAc-1-phosphotransferase, which targets catabolic enzymes to lysosomes through mannose-6-phosphate modification. Without LYSET, GlcNAc-1-phosphotransferase was unstable because of a hydrophilic transmembrane domain. Consequently, LYSET-deficient cells were depleted of lysosomal enzymes and impaired in turnover of macropinocytic and autophagic cargoes. Thus, LYSET represents a core component of the lysosomal enzyme trafficking pathway, underlies the pathomechanism for hereditary lysosomal storage disorders, and may represent a target to suppress metabolic adaptations in cancer.


Assuntos
Complexo de Golgi , Doenças por Armazenamento dos Lisossomos , Lisossomos , Proteínas , Animais , Complexo de Golgi/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Camundongos , Transporte Proteico , Proteínas/genética , Proteínas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
3.
Nat Commun ; 11(1): 1344, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165618

RESUMO

The intestinal microbiota modulates host physiology and gene expression via mechanisms that are not fully understood. Here we examine whether host epitranscriptomic marks are affected by the gut microbiota. We use methylated RNA-immunoprecipitation and sequencing (MeRIP-seq) to identify N6-methyladenosine (m6A) modifications in mRNA of mice carrying conventional, modified, or no microbiota. We find that variations in the gut microbiota correlate with m6A modifications in the cecum, and to a lesser extent in the liver, affecting pathways related to metabolism, inflammation and antimicrobial responses. We analyze expression levels of several known writer and eraser enzymes, and find that the methyltransferase Mettl16 is downregulated in absence of a microbiota, and one of its target mRNAs, encoding S-adenosylmethionine synthase Mat2a, is less methylated. We furthermore show that Akkermansia muciniphila and Lactobacillus plantarum affect specific m6A modifications in mono-associated mice. Our results highlight epitranscriptomic modifications as an additional level of interaction between commensal bacteria and their host.


Assuntos
Adenosina/análogos & derivados , Ceco/metabolismo , Microbioma Gastrointestinal , Fígado/metabolismo , Adenosina/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ceco/microbiologia , Feminino , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
4.
Autophagy ; 13(4): 670-685, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28129027

RESUMO

The vacuolar-type H+-translocating ATPase (v-H+-ATPase) has been implicated in the amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (MTORC1), an important regulator of macroautophagy. To reveal the mechanistic links between the v-H+-ATPase and MTORC1, we destablilized v-H+-ATPase complexes in mouse liver cells by induced deletion of the essential chaperone ATP6AP2. ATP6AP2-mutants are characterized by massive accumulation of endocytic and autophagic vacuoles in hepatocytes. This cellular phenotype was not caused by a block in endocytic maturation or an impaired acidification. However, the degradation of LC3-II in the knockout hepatocytes appeared to be reduced. When v-H+-ATPase levels were decreased, we observed lysosome association of MTOR and normal signaling of MTORC1 despite an increase in autophagic marker proteins. To better understand why MTORC1 can be active when v-H+-ATPase is depleted, the activation of MTORC1 was analyzed in ATP6AP2-deficient fibroblasts. In these cells, very little amino acid-elicited activation of MTORC1 was observed. In contrast, insulin did induce MTORC1 activation, which still required intracellular amino acid stores. These results suggest that in vivo the regulation of macroautophagy depends not only on v-H+-ATPase-mediated regulation of MTORC1.


Assuntos
Autofagia , Fígado/enzimologia , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo , Vacúolos/enzimologia , Aminoácidos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Embrião de Mamíferos/citologia , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Insulina/farmacologia , Fígado/efeitos dos fármacos , Fígado/ultraestrutura , Lisossomos/efeitos dos fármacos , Camundongos Knockout , ATPases Translocadoras de Prótons/deficiência , Receptores de Superfície Celular/deficiência , Vacúolos/efeitos dos fármacos
5.
J Cell Biol ; 189(7): 1171-86, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20566682

RESUMO

The profound luminal acidification essential for the degradative function of lysosomes requires a counter-ion flux to dissipate an opposing voltage that would prohibit proton accumulation. It has generally been assumed that a parallel anion influx is the main or only counter-ion transport that enables acidification. Indeed, defective anion conductance has been suggested as the mechanism underlying attenuated lysosome acidification in cells deficient in CFTR or ClC-7. To assess the individual contribution of counter-ions to acidification, we devised means of reversibly and separately permeabilizing the plasma and lysosomal membranes to dialyze the cytosol and lysosome lumen in intact cells, while ratiometrically monitoring lysosomal pH. Replacement of cytosolic Cl(-) with impermeant anions did not significantly alter proton pumping, while the presence of permeant cations in the lysosomal lumen supported acidification. Accordingly, the lysosomes were found to acidify to the same pH in both CFTR- and ClC-7-deficient cells. We conclude that cations, in addition to chloride, can support lysosomal acidification and defects in lysosomal anion conductance cannot explain the impaired microbicidal capacity of CF phagocytes.


Assuntos
Cátions/metabolismo , Lisossomos/metabolismo , Animais , Ânions , Cátions/farmacologia , Permeabilidade da Membrana Celular , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística , Humanos , Concentração de Íons de Hidrogênio , Membranas Intracelulares , Macrófagos , Camundongos , Camundongos Transgênicos , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA