Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Scand J Immunol ; : e13391, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773691

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we showed that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumours inhibits tumour growth compared to control. Multiplex cytokine analyses showed that tumours from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting a potential association between eosinophil recruitment and tumour inhibition. In a human peripheral leukocyte co-culture model, we showed that leukocytes stimulated with MAIT ligand showed an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we showed that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.

3.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38293128

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we show that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumors inhibits tumor growth compared to control. Multiplex cytokine analyses show that tumors from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting an association between eosinophil recruitment and tumor inhibition. In a human peripheral leukocyte co-culture model, we show that leukocytes stimulated with MAIT ligand show an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we show that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.

4.
Front Immunol ; 14: 1212100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415974

RESUMO

Background: Immune cell composition is a critical and dynamic component of the tumor microenvironment, which has an impact on immunosuppression and progression of cancer. T cells, especially CD8+ T cells, are one of the major immune cell types responsible for tumor cell killing employing receptor-ligand mediated apoptosis and/or releasing lytic granules among others. Accumulating evidence highlighted that adoptive transfer of activated and/or modified immune cells can enhance anti-tumorigenic immune responses and serve as promising therapy approach for patients with cancers. The mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a serine/threonine protein kinase, which controls production and secretion of numerous pro-inflammatory cytokines and chemokines involved in tumorigenesis. However, limited efforts have been made to learn how MK2 may affects CD8+ T cell action and function in the tumor microenvironment especially in gastrointestinal cancers. Methods: To explore the therapeutic potential of MK2 in the immune response mediated by CD8+ T cells, RAG1 knockout mice with PK5L1940 and BRAF cells-derived allograft tumors were treated with WT or MK2 knockout CD8+ T cells. The phenotype of CD8+ T cells with MK2 depletion were evaluated in vitro. Immunofluorescence staining, real-time PCR and multiplex analysis were utilized to estimate the expression of apoptotic and lytic factors. Results: Here, we show that CD8+ T cells with MK2 depletion prevent gastrointestinal cancer growth, which is accompanied by enhanced expression and secretion of factors related to apoptosis. Moreover, using in vitro and in vivo approaches, we found that depletion of MK2 lead to hyperactivation of CD8+ T cells and enhanced anti-tumor immunity. Conclusion: Overall, we documented that MK2 drives the progression of gastrointestinal cancers and prevents immune response generated by CD8+ T cells suggesting potential implications of MK2 in the immunotherapy of gastrointestinal cancers.


Assuntos
Antineoplásicos , Neoplasias do Colo , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias do Colo/terapia , Imunoterapia , Peptídeos e Proteínas de Sinalização Intracelular , Pâncreas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Microambiente Tumoral
5.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047550

RESUMO

Acrolein, a highly reactive α,ß-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.


Assuntos
Diabetes Mellitus , Doenças do Sistema Digestório , Animais , Humanos , Aldeídos/metabolismo , Acroleína/química , Dieta , Diabetes Mellitus/etiologia
6.
Life Sci ; 322: 121650, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011872

RESUMO

GDF11 (Growth differentiation factor 11) is a newly discovered member of family of transforming growth factors-ß. Its crucial role was confirmed in physiology, i.e. embryogenesis due to its involvement in bone formation, skeletogenesis and it is essential to stating skeletal pattern. GDF11 is described as a rejuvenating and anti-aging molecule, that could even restore functions. Beside embryogenesis, GDF11 participates in the process of inflammation and carcinogenesis. An anti-inflammatory effect of GDF11 was found in experimental colitis, psoriasis and arthritis. Current data regarding liver fibrosis and renal injury indicate that GDF11 may act as pro-inflammatory agent. In this review, we describe its involvement in regulation of acute and chronic inflammatory disorders.


Assuntos
Fatores de Diferenciação de Crescimento , Psoríase , Humanos , Inflamação , Fator de Crescimento Transformador beta , Osteogênese , Proteínas Morfogenéticas Ósseas
7.
Cells ; 12(6)2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36980220

RESUMO

Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant that seriously threatens human health and life. Due to its high reactivity, cytotoxicity and genotoxicity, acrolein is involved in the development of several diseases, including multiple sclerosis, neurodegenerative diseases such as Alzheimer's disease, cardiovascular and respiratory diseases, diabetes mellitus and even the development of cancer. Traditional tobacco smokers and e-cigarette users are particularly exposed to the harmful effects of acrolein. High concentrations of acrolein have been found in both mainstream and side-stream tobacco smoke. Acrolein is considered one of cigarette smoke's most toxic and harmful components. Chronic exposure to acrolein through cigarette smoke has been linked to the development of asthma, acute lung injury, chronic obstructive pulmonary disease (COPD) and even respiratory cancers. This review addresses the current state of knowledge on the pathological molecular mechanisms of acrolein in the induction, course and development of lung diseases and cancers in smokers.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Neoplasias , Doença Pulmonar Obstrutiva Crônica , Poluição por Fumaça de Tabaco , Humanos , Acroleína/toxicidade , Pulmão , Doença Pulmonar Obstrutiva Crônica/etiologia , Neoplasias/induzido quimicamente
8.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166683, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878303

RESUMO

Among the numerous adhesion G protein-coupled receptors (GPCRs), adhesion G protein-coupled estrogen receptor F5 (ADGRF5) contains unique domains in the long N-terminal tail which can determine cell-cell and cell-matrix interaction as well as cell adhesion. Nevertheless, the biology of ADGRF5 is complex and still poorly explored. Accumulating evidence suggests that the ADGRF5 activity is fundamental in health and disease. For instance, ADGRF5 is essential in the proper function of lungs and kidney as well as the endocrine system, and its signification in vascularization and tumorigenesis has been demonstrated. The most recent studies have provided findings about the diagnostic potential of ADGRF5 in osteoporosis and cancers, and ongoing studies suggest other diseases as well. Here, we elaborate on the current state of knowledge about the ADGRF5 in the physiology and pathophysiology of human diseases and highlight its high potential as a novel target in various therapeutic areas.


Assuntos
Relevância Clínica , Neoplasias , Humanos , Adesão Celular , Pulmão/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
9.
Br J Cancer ; 128(2): 387-397, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36376448

RESUMO

BACKGROUND: Immunotherapy of gastrointestinal cancers is challenging; however, several lines of evidence suggest that adoptive transfer of stimulated or modified immune cells support not only protective role of immune cells in tumor microenvironment, but actively participate in the elimination of cancer cells. METHODS: In vivo studies employing cancer cell-derived allograft murine models of gastrointestinal cancers were performed. The effects of T helper (Th) 2 cells on gastrointestinal cancers growth and tumor microenvironment composition using adoptive transfer of Th2 cells, interleukin (IL)-5 treatment, and immunofluorescence, multiplex and real-time PCR were explored. RESULTS: Here, we show that Th2 cells play an essential role in the inhibition of colon and pancreas cancers progression. In murine models of gastrointestinal tumors using adoptive transfer of Th2 cells, we identify that Th2 cells are responsible for generation of apoptotic factors and affect macrophage as well as eosinophil recruitment into tumors where they produce cytotoxic factors. Moreover, we found that Th2 cells lead to IL-5 hypersecretion, which links the anti-tumorigenic function of Th2 cells and eosinophils. Importantly, we noted that recombinant IL-5 administration is also related with inhibition of gastrointestinal tumor growth. Finally, using an in vitro approach, we documented that both Th2 cells and eosinophils are directly responsible for gastrointestinal cancer cell killing. CONCLUSIONS: These data demonstrate the significance of Th2 cells, eosinophils and IL-5 in the inhibition of gastrointestinal tumor growth, and pointed toward tumor microenvironment reprogramming as a Th2 cell-mediated anti-tumorigenic mechanism of action.


Assuntos
Neoplasias Pancreáticas , Células Th2 , Humanos , Camundongos , Animais , Eosinófilos , Interleucina-5/farmacologia , Colo , Macrófagos , Células Th1 , Citocinas/farmacologia , Microambiente Tumoral
10.
Cells ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36497132

RESUMO

Adhesion G protein-coupled receptor F5 (ADGRF5) is involved inthe neoplastic transformation of some cancer types. However, the significance of ADGRF5 expression signature and the impact of signaling pathways mediated by ADGRF5 during neoplastic transformation of the colon and colorectal cancer (CRC) progression has been poorly examined. Using Gene Expression Omnibus and The Cancer Genome Atlas datasets, we showed that ADGRF5 is overexpressed in the colons of patients with CRC. In line, combined analysis of ADGRF5 expression with clinical characterization revealed an increased expression of ADGRF5 in patients with more advanced stages of CRC compared to patients with early stages of CRC. The Spearman correlation analysis documented numerous genes positively and negatively correlated with the expression pattern of ADGRF5 in the colon of patients with CRC. In the colon of CRC patients, the expression signature of ADGRF5 was associated with genes participating in phosphatidylinositol 3-kinase/Akt, focal adhesion, cell adhesion molecules, and ribosome signaling pathways. Of note, ADGRF5 expression correlated with the levels of tumor-infiltrating immune cells in the colon of CRC patients. Moreover, we found that CRC patients with high expression of ADGRF5 had a significantly lower probability of overall survival and disease-free survival. In conclusion, our results support the prognostic value of ADGRF5 and its potent therapeutic implication in CRC.


Assuntos
Neoplasias Colorretais , Receptores Acoplados a Proteínas G , Humanos , Adesão Celular/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Metástase Neoplásica
11.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362348

RESUMO

Cases of pancreatic neuroendocrine tumors (PNETs) are growing in number, and new treatment options are needed in order to improve patient outcomes. The mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a crucial regulator of cytokine/chemokine production. The significance of MK2 expression and signaling pathway mediated by MK2 in PNETs has not been investigated. To characterize the impact of MK2 on PNET growth, we used the RipTag2 transgenic murine model of PNETs, and we developed a primary PNET cell line for both in vitro and in vivo studies. In the transgenic murine model of PNETs, we found that MK2 inhibition improves survival of mice and prevents PNET progression. MK2 blockade abolished cytokine/chemokine production, which was related to macrophage function. A role for MK2 in the regulation of metabolic factor secretion in PNETs was identified, making this the first study to identify a potential role for the MK2 pathway in regulation of tumor metabolism. Moreover, using an in vitro approach and allograft model of PNETs, we were able to show that macrophages with MK2 depletion exhibit increased cytotoxicity against PNET cells and substantially decreased production of pro-inflammatory cytokines and chemokines, as well as metabolic factors. Taken together, our work identifies MK2 as a potent driver of immune response and metabolic effectors in PNETs, suggesting it is a potential therapeutic target for patients with PNETs.


Assuntos
Tumores Neuroectodérmicos Primitivos , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Animais , Camundongos , Tumores Neuroendócrinos/metabolismo , Modelos Animais de Doenças , Macrófagos/metabolismo , Citocinas/metabolismo , Quimiocinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Tumores Neuroectodérmicos Primitivos/metabolismo
12.
Pharmacol Rep ; 74(4): 709-717, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35622222

RESUMO

BACKGROUND: G protein-coupled receptor 35 (GPR35) is involved in the carcinogenesis; however, limited data exist on its relevance for overall survival (OS) and disease-specific survival (DSS) in patients with cancer. METHODS: We have examined The Cancer Genome Atlas dataset to check the relations between GPR35 expression pattern and OS or DSS of patients with colorectal cancer (CRC). RESULTS: The performed analysis showed a negative association between positive GPR35 expression Z score and OS in males, which remains statistically significant in advanced stages of colon (COAD) and rectal (READ) adenocarcinoma combined. CONCLUSIONS: These findings suggest the prognostic value of early testing of GPR35 in male patients with an increased risk of CRC development and warrant further clinical confirmation.


Assuntos
Neoplasias Colorretais , Receptores Acoplados a Proteínas G , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Masculino , Prognóstico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Taxa de Sobrevida
13.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188640, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695532

RESUMO

Pancreatic neuroendocrine tumors are rare types of pancreatic cancer formed from islet cells of pancreas. Clinical presentation of pancreatic neuroendocrine tumors depends on both tumor progression and hormone secretion status, which generate several complications in both diagnosis and treatment. Despite numerous strategies, treatment of patients with pancreatic neuroendocrine tumors still needs improvement. It is suggested that immune response modulation may be essential in the regulation of pancreatic neuroendocrine tumor progression and patient's symptomology. Accumulating evidence indicates that immunotherapy seems to be a promising treatment option for patients with pancreatic neuroendocrine tumors. Nevertheless, several challenges in pre-clinical and clinical studies are present. This review provides knowledge about microenvironment of pancreatic neuroendocrine tumors including significance of cytokine and chemokine as well as specific immune cell types. Additionally, in vitro and in vivo models of pancreatic neuroendocrine tumors and translational challenges are highlighted.


Assuntos
Imunoterapia/métodos , Tumores Neuroendócrinos/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral
14.
Pharmacol Rep ; 73(6): 1670-1679, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34535873

RESUMO

BACKGROUND: The role of the incretin hormone, glucagon-like peptide (GLP-1), in Crohn's disease (CD), is still poorly understood. The aim of this study was to investigate whether colitis is associated with changes in blood glucose levels and the possible involvement of the incretin system as an underlaying factor. METHODS: We used a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). Macroscopic and microscopic score and expression of inflammatory cytokines were measured. The effect of colitis on glucose level was studied by measurement of fasting glucose and GLP-1, dipeptidyl peptidase IV (DPP IV) levels, prohormone convertase 1/3 (PC 1/3) and GLP-1 receptor (GLP-1R) expression in mice. We also measured the level of GLP-1, DPP IV and expression of glucagon (GCG) and PC 1/3 mRNA in serum and colon samples from healthy controls and CD patients. RESULTS: Fasting glucose levels were increased in animals with colitis compared to controls. GLP-1 was decreased in both serum and colon of mice with colitis in comparison to the control group. DPP IV levels were significantly increased in serum, but not in the colon of mice with colitis as compared to healthy animals. Furthermore, PC 1/3 and GLP-1R expression levels were increased in mice with colitis as compared to controls. In humans, no differences were observed in fasting glucose level between healthy subjects and CD patients. GLP-1 levels were significantly decreased in the serum. Interestingly, GLP-1 level was significantly increased in colon samples of CD patients compared to healthy subjects. No significant differences in DPP IV levels in serum and colon samples were observed between groups. CONCLUSIONS: Changes in the incretin system during colitis seem to contribute to the impaired glucose levels. Differences in incretin levels seem to be modulated by degrading enzyme DPP-IV and PC 1/3. Obtained results suggest that the incretin system may become a novel therapeutic approach in the treatment of CD.


Assuntos
Glicemia/metabolismo , Colite/patologia , Doença de Crohn/patologia , Incretinas/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Feminino , Peptídeo 1 Semelhante ao Glucagon/sangue , Humanos , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Pró-Proteína Convertase 1/genética , Ácido Trinitrobenzenossulfônico , Adulto Jovem
15.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803793

RESUMO

Inflammatory bowel diseases (IBD) are at the top of the worldwide rankings for gastrointestinal diseases as regards occurrence, yet efficient and side-effect-free treatments are currently unavailable. In the current study, we proposed a new concept for anti-inflammatory treatment based on gold (III) complexes. A new gold (III) complex TGS 121 was designed and screened in the in vitro studies using a mouse macrophage cell line, RAW264.7, and in vivo, in the dextran sulphate sodium (DSS)-induced mouse model of colitis. Physicochemical studies showed that TGS 121 was highly water-soluble; it was stable in water, blood, and lymph, and impervious to sunlight. In lipopolysaccharide (LPS)-stimulated RAW264.7 cells, the complex showed a potent anti-inflammatory profile, as evidenced in neutral red uptake and Griess tests. In the DSS-induced mouse model of colitis, the complex administered in two doses (1.68 µg/kg, intragastrically, and 16.8 µg/kg, intragastrically, once daily) produced a significant (* p < 0.05) anti-inflammatory effect, as shown by macroscopic score. The mechanism of action of TGS 121 was related to the enzymatic and non-enzymatic antioxidant system; moreover, TGS 121 induced changes in the tight junction complexes expression in the intestinal wall. This is the first study proving that gold (III) complexes may have therapeutic potential in the treatment of IBD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ouro/uso terapêutico , Inflamação/patologia , Intestinos/patologia , Estudo de Prova de Conceito , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Ouro/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
16.
Neurogastroenterol Motil ; 33(3): e14003, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33058313

RESUMO

BACKGROUND: GPR18 is a recently deorphanized receptor which was reported to act with several endogenous cannabinoid ligands. Here, we aimed to describe the role of GPR18 in intestinal inflammation and inflammatory pain. METHODS: The anti-inflammatory activity of selective GPR18 agonist, PSB-KK-1415, and antagonist, PSB-CB5, was characterized in semi-chronic and chronic mouse models of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). The extent of inflammation was evaluated based on the macroscopic and microscopic scores, quantification of myeloperoxidase (MPO) activity, and Western blot analyses of tumor necrosis factor-α (TNF-α) and interleukin-6 in colonic tissue. The expression of GPR18 in colonic samples from patients with Crohn's disease (CD) was quantified using real-time PCR. The anti-nociceptive potential of the agonist in intestinal inflammation was evaluated in the mouse model of inflammatory pain. KEY RESULTS: In semi-chronic colitis, PSB-KK-1415 reduced macroscopic score (1.79 ± 0.22 vs. 2.61 ± 0.48), expression of TNF-α (1.89 ± 0.36 vs. 2.83 ± 0.64), and microscopic score (5.00 ± 0.33 vs. 6.45 ± 0.40), all compared to mice with colitis. In chronic colitis, PSB-KK-1415 decreased macroscopic score (3.33 ± 1.26 vs. 4.00 ± 1.32) and MPO activity (32.23 ± 8.51 vs. 41.33 ± 11.64) compared to inflamed mice. In the mouse model of inflammatory pain, PSB-KK-1415 decreased the number of pain-induced behaviors in both, controls (32.60 ± 2.54 vs. 58.00 ± 6.24) and inflamed mice (60.83 ± 2.85 vs. 85.00 ± 5.77) compared to animals without treatment with PSB-KK-1415 (P < 0.005 for both). Lastly, we showed an increased expression of GPR18 in CD patients compared to healthy controls (3.77 ± 1.46 vs. 2.38 ± 0.66, p = 0.87). CONCLUSIONS & INFERENCES: We showed that GPR18 is worth considering as a potential treatment target in intestinal inflammation and inflammatory pain.


Assuntos
Colite/metabolismo , Doença de Crohn/genética , Inflamação/metabolismo , Nociceptividade/efeitos dos fármacos , Dor Nociceptiva/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Colite/fisiopatologia , Doença de Crohn/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/fisiopatologia , Masculino , Camundongos , Pessoa de Meia-Idade , Dor Nociceptiva/fisiopatologia , Peroxidase/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo
17.
Cancers (Basel) ; 12(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036138

RESUMO

Tumor-associated macrophages (TAMs) in the gastrointestinal tumor microenvironment (TME) are known to polarize into populations exhibiting pro- or anti-tumoral activity in response to stimuli such as growth factors and cytokines. Our previous work has recognized granulocyte colony-stimulating factor (G-CSF) as a cytokine capable of influencing immune cells of the TME exhibiting pro-tumoral activity. Here, we aimed to focus on how G-CSF regulates TAM phenotype and function and the effects on gastrointestinal (GI) tumor progression. Thus, wildtype (WT) and G-CSFR-/- macrophages were examined for cytokine production, gene expression, and transcription factor activity. Adoptive transfer of WT or G-CSFR-/- macrophages into tumor-bearing mice was performed to study their influence in the progression of colon (MC38) and pancreatic (PK5L1940) tumor mouse models. Finally, the difference in cytotoxic potential between WT and G-CSFR-/- macrophages was examined both in vitro and in vivo. Our results indicate that G-CSF promotes increased IL-10 production and decreased IL-12 production, which was reversed in G-CSFR-/- macrophages for a pro-inflammatory phenotype. Furthermore, G-CSFR-/- macrophages were characterized by higher levels of NOS2 expression and NO production, which led to greater tumor related cytotoxicity both in vitro and in vivo. Our results suggest that in the absence of G-CSFR, macrophage-related tumor cytotoxicity was amplified. These findings, along with our previous reports, pinpoint G-CSF /G-CSFR as a prominent target for possible clinical applications that aim to control the TME and the GI tumor progression.

18.
Front Immunol ; 11: 1885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042110

RESUMO

Cytokines are known to shape the tumor microenvironment and although progress has been made in understanding their role in carcinogenesis, much remains to learn regarding their role in tumor growth and progression. We have identified granulocyte colony-stimulating factor (G-CSF) as one such cytokine, showing that G-CSF is linked with metastasis in human gastrointestinal tumors and neutralizing G-CSF in a mouse model of colitis-associated cancer is protective. Here, we set out to identify the role of G-CSF and its receptor, G-CSFR, in CD4+ and CD8+ T cell responses in the tumor microenvironment. MC38 colon cancer cells were injected into WT, G-CSFR-/- mice, or Rag2-/- mice. Flow cytometry, Real Time PCR and Multiplex cytokine array analysis were used for in vitro T cell phenotype analysis. Adoptive transfer of WT or G-CSFR-/- CD4+ of CD8+ T cells were performed. Mouse tumor size, cytokine expression, T cell phenotype, and cytotoxic activity were analyzed. We established that in G-CSFR-/- mice, tumor growth of MC38 colon cancer cells is significantly decreased. T cell phenotype and cytokine production were also altered, as both in vitro and in vivo approaches revealed that the G-CSF/G-CSFR stimulate IL-10-producing, FoxP3-expressing CD4+ and CD8+ T cells, whereas G-CSFR-/- T cells exhibit increased IFNγ and IL-17A production, leading to increased cytotoxic activity in the tumor microenvironment. Furthermore, peritumoral injection of recombinant IFNγ or IL-17A inhibited colon and pancreas tumor growth compared to controls. Taken together, our data reveal an unknown mechanism by which G-CSF, through its receptor G-CSFR, promotes an inhibitory Treg phenotype that limits tumor immune responses and furthermore suggest that targeting this cytokine/receptor axis could represent a novel therapeutic approach for gastrointestinal, and likely other tumors with high expression of these factors.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Neoplasias do Colo/metabolismo , Citotoxicidade Imunológica , Fator Estimulador de Colônias de Granulócitos/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Receptores de Fator Estimulador de Colônias/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de Fator Estimulador de Colônias/deficiência , Receptores de Fator Estimulador de Colônias/genética , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Carga Tumoral , Microambiente Tumoral
19.
Eur J Pharmacol ; 885: 173463, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32835668

RESUMO

Endogenous opioid system is involved in the maintenance of the intestinal homeostasis. Recently, we proved that stimulation of opioid receptors using P-317, a cyclic morphiceptin analog, resulted in the alleviation of acute colitis in mice. The aim of the current study was to assess the effect of P-317 during colitis and colitis-associated colorectal cancer in mice. Colitis was induced by addition of dextran sodium sulfate (DSS) into drinking water. Colitis-associated colorectal cancer was induced by a single intraperitoneal injection of azoxymethane (AOM) and subsequent addition of DSS into drinking water (week 2, 5, 8). During macroscopic damage evaluation the samples were collected and used for biochemical (MPO activity assay), molecular (qPCR and western blot) and histological studies. In experimental colitis, P-317 induced an anti-inflammatory response as indicated by macroscopic and microscopic scores. In the colitis-associated colorectal cancer model, a significant difference in colorectal tumor development was observed between vehicle- and P-317-treated mice. P-317 decreased the total number of colonic tumors and inhibited MPO activity. Hematoxylin and eosin staining confirmed anti-tumor activity of P-317. The expression of TNF-α was decreased in P-317-treated mice as compared to the vehicle-treated group. P-317 decreased proliferation as well as ß-catenin expression in tumors. P-317, a mixed MOP and KOP receptor agonist, induced an anti-inflammatory response in experimental colitis and decreased tumor development in colitis-associated colorectal cancer in mice.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Colite/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Endorfinas/farmacologia , Receptores Opioides kappa/agonistas , Receptores Opioides mu/agonistas , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/uso terapêutico , Azoximetano , Carcinógenos , Proliferação de Células/efeitos dos fármacos , Colite/induzido quimicamente , Colite/complicações , Neoplasias Colorretais/etiologia , Sulfato de Dextrana , Endorfinas/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/antagonistas & inibidores
20.
Artigo em Inglês | MEDLINE | ID: mdl-32595606

RESUMO

The regulatory role of estrogens and nuclear estrogen receptors, i. e., estrogen receptor α and ß has been reported in gastrointestinal diseases. However, the contribution of G protein-coupled estrogen receptor, the membrane-bound estrogen receptor, is still poorly understood. Unlike nuclear estrogen receptors, which are responsible for the genomic activity of estrogens, the G protein-coupled estrogen receptor affects the "rapid" non-genomic activity of estrogens, leading to modulation of many signaling pathways and ultimately changing gene expression. Recently, the crucial role of G protein-coupled estrogen receptor in intestinal pathogenesis has been documented. It has been shown that the G protein-coupled estrogen receptor can modulate the progression of irritable bowel syndrome, inflammatory bowel diseases such as Crohn's disease and ulcerative colitis as well as colorectal cancer. The G protein-coupled estrogen receptor appears to be a potent factor regulating abdominal sensitivity and pain, intestinal peristalsis, colitis development, proliferation and migration potential of colorectal cancer cells and seems to be a useful target in gastrointestinal diseases. In this review, we present the current state of knowledge about the contribution of the G protein-coupled estrogen receptor to irritable bowel syndrome, inflammatory bowel diseases and colorectal cancer.


Assuntos
Neoplasias Colorretais/fisiopatologia , Doenças Inflamatórias Intestinais/fisiopatologia , Síndrome do Intestino Irritável/fisiopatologia , Receptores de Estrogênio/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA