Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Tuberculosis (Edinb) ; 147: 102503, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729070

RESUMO

Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.


Assuntos
Modelos Animais de Doenças , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Mycobacterium abscessus/efeitos dos fármacos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Camundongos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia
2.
ACS Infect Dis ; 10(4): 1379-1390, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38511206

RESUMO

Two lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), play various, albeit incompletely defined, roles in the interactions of mycobacteria with the host. Growing evidence points to the modification of LM and LAM with discrete covalent substituents as a strategy used by these bacteria to modulate their biological activities. One such substituent, originally identified in Mycobacterium tuberculosis (Mtb), is a 5-methylthio-d-xylose (MTX) sugar, which accounts for the antioxidative properties of LAM. The widespread distribution of this motif across Mtb isolates from several epidemiologically important lineages have stimulated interest in MTX-modified LAM as a biomarker of tuberculosis infection. Yet, several lines of evidence indicate that MTX may not be restricted to Mtb and that this motif may substitute more acceptors than originally thought. Using a highly specific monoclonal antibody to the MTX capping motif of Mtb LAM, we here show that MTX motifs not only substitute the mannoside caps of LAM but also the mannan core of LM in Mtb. MTX substituents were also found on the LM and LAM of pathogenic, slow-growing nontuberculous mycobacteria. The presence of MTX substituents on the LM and LAM from Mtb enhances the pro-apoptotic properties of both lipoglycans on LPS-stimulated THP-1 macrophages. A comparison of the cytokines and chemokines produced by resting and LPS-activated THP-1 cells upon exposure to MTX-proficient versus MTX-deficient LM further indicates that MTX substituents confer anti-inflammatory properties upon LM. These findings add to our understanding of the glycan-based strategies employed by slow-growing pathogenic mycobacteria to alter the host immune response to infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Lipopolissacarídeos , Tuberculose/microbiologia
3.
Chem Sci ; 15(11): 3879-3892, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487227

RESUMO

Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines. These findings underscore ASCC's promise as a robust platform for drug discovery.

4.
Sci Adv ; 10(1): eadh7957, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170768

RESUMO

Invading microbes face a myriad of cidal mechanisms of phagocytes that inflict physical damage to microbial structures. How intracellular bacterial pathogens adapt to these stresses is not fully understood. Here, we report the discovery of a virulence mechanism by which changes to the mechanical stiffness of the mycobacterial cell surface confer refraction to killing during infection. Long-term time-lapse atomic force microscopy was used to reveal a process of "mechanical morphotype switching" in mycobacteria exposed to host intracellular stress. A "soft" mechanical morphotype switch enhances tolerance to intracellular macrophage stress, including cathelicidin. Both pharmacologic treatment, with bedaquiline, and a genetic mutant lacking uvrA modified the basal mechanical state of mycobacteria into a soft mechanical morphotype, enhancing survival in macrophages. Our study proposes microbial cell mechanical adaptation as a critical axis for surviving host-mediated stressors.


Assuntos
Mycobacterium , Macrófagos/metabolismo , Fagócitos , Membrana Celular
5.
PLoS Pathog ; 19(8): e1011575, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603560

RESUMO

Mycobacterium abscessus causes severe disease in patients with cystic fibrosis. Little is known in M. abscessus about the roles of small regulatory RNAs (sRNA) in gene regulation. We show that the sRNA B11 controls gene expression and virulence-associated phenotypes in this pathogen. B11 deletion from the smooth strain ATCC_19977 produced a rough strain, increased pro-inflammatory signaling and virulence in multiple infection models, and increased resistance to antibiotics. Examination of clinical isolate cohorts identified isolates with B11 mutations or reduced expression. We used RNAseq and proteomics to investigate the effects of B11 on gene expression and test the impact of mutations found in clinical isolates. Over 200 genes were differentially expressed in the deletion mutant. Strains with the clinical B11 mutations showed expression trends similar to the deletion mutant, suggesting partial loss of function. Among genes upregulated in the B11 mutant, there was a strong enrichment for genes with B11-complementary sequences in their predicted ribosome binding sites (RBS), consistent with B11 functioning as a negative regulator that represses translation via base-pairing to RBSs. Comparing the proteomes similarly revealed that upregulated proteins were strongly enriched for B11-complementary sequences. Intriguingly, genes upregulated in the absence of B11 included components of the ESX-4 secretion system, critical for M. abscessus virulence. Many of these genes had B11-complementary sequences at their RBSs, which we show is sufficient to mediate repression by B11 through direct binding. Altogether, our data show that B11 acts as a direct negative regulator and mediates (likely indirect) positive regulation with pleiotropic effects on gene expression and clinically important phenotypes in M. abscessus. The presence of hypomorphic B11 mutations in clinical strains is consistent with the idea that lower B11 activity may be advantageous for M. abscessus in some clinical contexts. This is the first report on an sRNA role in M. abscessus.


Assuntos
Mycobacterium abscessus , Pequeno RNA não Traduzido , Mycobacterium abscessus/genética , Virulência/genética , Antibacterianos , Pequeno RNA não Traduzido/genética
6.
ACS Chem Biol ; 18(3): 595-604, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36856664

RESUMO

Bacteria from the genus Mycobacterium include pathogens that cause serious diseases in humans and remain as difficult infectious agents to treat. Central to these challenges are the composition and organization of the mycobacterial cell envelope, which includes unique and complex glycans. Inositol is an essential metabolite for mycobacteria due to its presence in the structural core of the immunomodulatory cell envelope glycolipids phosphatidylinositol mannoside (PIM) and PIM-anchored lipomannan (LM) and lipoarabinomannan (LAM). Despite their importance to mycobacterial physiology and pathogenesis, many aspects of PIM, LM, and LAM construction and dynamics remain poorly understood. Recently, probes that allow metabolic labeling and detection of specific mycobacterial glycans have been developed to investigate cell envelope assembly and dynamics. However, these tools have been limited to peptidoglycan, arabinogalactan, and mycolic acid-containing glycolipids. Herein, we report the development of synthetic azido inositol (InoAz) analogues as probes that can metabolically label PIMs, LM, and LAM in intact mycobacteria. Additionally, we leverage an InoAz probe to discover an inositol importer and catabolic pathway in Mycobacterium smegmatis. We anticipate that in the future, InoAz probes, in combination with bioorthogonal chemistry, will provide a valuable tool for investigating PIM, LM, and LAM biosynthesis, transport, and dynamics in diverse mycobacterial organisms.


Assuntos
Mycobacterium tuberculosis , Mycobacterium , Humanos , Mycobacterium/química , Lipopolissacarídeos/metabolismo , Polissacarídeos/metabolismo , Fosfatidilinositóis/metabolismo , Inositol/química , Glicolipídeos/metabolismo , Mycobacterium tuberculosis/metabolismo
7.
Tuberculosis (Edinb) ; 138: 102288, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470124

RESUMO

The benzothiazole amide CRS0393 demonstrated excellent in vitro activity against nontuberculous mycobacteria (NTM), including M. abscessus isolates from cystic fibrosis (CF) patients, with minimum inhibitory concentrations (MICs) of ≤0.03-0.5 µg/mL. The essential transport protein MmpL3 was confirmed as the target via analysis of spontaneous resistant mutants and further biological profiling. In mouse pharmacokinetic studies, intratracheal instillation of a single dose of CRS0393 resulted in high concentrations of drug in epithelial lining fluid (ELF) and lung tissue, which remained above the M. abscessus MIC for at least 9 hours post-dose. This exposure resulted in a penetration ratio of 261 for ELF and 54 for lung tissue relative to plasma. CRS0393 showed good oral bioavailability, particularly when formulated in kolliphor oil, with a lung-to-plasma penetration ratio ranging from 0.5 to 4. CRS0393 demonstrated concentration-dependent reduction of intracellular M. abscessus in a THP-1 macrophage infection model. CRS0393 was well tolerated following intranasal administration (8 mg/kg) or oral dosing (25 mg/kg) once daily for 28 days in dexamethasone-treated C3HeB/FeJ mice. Efficacy against M. abscessus strain 103 was achieved via the intranasal route, while oral dosing will need further optimization. CRS0393 holds promise for development as a novel agent with broad antimycobacterial activity.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Micobactérias não Tuberculosas , Pulmão , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Testes de Sensibilidade Microbiana
8.
J Med Chem ; 66(1): 170-187, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36563291

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is one of the leading causes of death in developing countries. Non-tuberculous mycobacteria (NTM) infections are rising and prey upon patients with structural lung diseases such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis. All mycobacterial infections require lengthy treatment regimens with undesirable side effects. Therefore, new antimycobacterial compounds with novel mechanisms of action are urgently needed. Published indole-2-carboxamides (IC) with suggested inhibition of the essential transporter MmpL3 showed good potency against whole-cell M.tb, yet had poor aqueous solubility. This project focused on retaining the required MmpL3 inhibitory pharmacophore and increasing the molecular heteroatom percentage by reducing lipophilic atoms. We evaluated pyrrole, mandelic acid, imidazole, and acetamide functional groups coupled to lipophilic head groups, where lead acetamide-based compounds maintained high potency against mycobacterial pathogens, had improved in vitro ADME profiles over their indole-2-carboxamide analogs, were non-cytotoxic, and were determined to be MmpL3 inhibitors.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/química , Tuberculose/tratamento farmacológico , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Indóis/química , Testes de Sensibilidade Microbiana
9.
J Vet Emerg Crit Care (San Antonio) ; 32(2): 173-180, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35166436

RESUMO

OBJECTIVE: To compare the level of agreement of measurement of analytes (sodium, chloride, potassium, urea nitrogen [UN], creatinine, glucose) in a population of healthy adult cats between the point-of-care (POC) analyzer and laboratory analyzer. To establish reference intervals for the POC analyzer in healthy adult cats. DESIGN: Prospective observational study. SETTING: University teaching hospital. ANIMALS: Fifty-five cats were screened. Seven cats were excluded due to aggression that prohibited phlebotomy, and 1 cat was excluded due to prolonged restraint; 47 cats were enrolled. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: In this patient population, reference intervals for the POC analyzer were calculated: sodium 145-157 mmol/L; chloride 116-124 mmol/L; potassium 3.4-5.5 mmol/L; UN 5.71-13.9 mmol/L (16-39 mg/dl); creatinine 74.3-189.2 mmol/L (0.84-2.14 mg/dl); and glucose 4-11.8 mmol/L (72-213 mg/dl). Comparison between the POC analyzer and laboratory analyzer using the Bland-Altman method was performed. The bias for each analyte is as follows: sodium 1.55 mmol/L; chloride 0.99 mmol/L; potassium 0.21 mmol/L; UN -0.25 mmol/L (-0.7 mg/dl); creatinine 9.73 mmol/L (0.11 mg/dl); and glucose 0.5 mmol/L (9.79 mg/dl). CONCLUSIONS: Reference intervals for each analyte were similar to other chemistry analyzers. There was no significant difference between the POC and laboratory analyzers in analysis of UN, with a statistically significant difference observed with sodium, potassium, chloride, creatinine, and glucose. However, the values are likely not sufficiently different to alter initial clinical decisions regarding patient care.


Assuntos
Laboratórios , Sistemas Automatizados de Assistência Junto ao Leito , Animais , Análise Química do Sangue/veterinária , Gasometria/veterinária , Potássio , Valores de Referência
10.
ACS Infect Dis ; 8(2): 296-309, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35037462

RESUMO

Mycobacterium abscessus (Mab) has emerged as a challenging threat to individuals with cystic fibrosis. Infections caused by this pathogen are often impossible to treat due to the intrinsic antibiotic resistance leading to lung malfunction and eventually death. Therefore, there is an urgent need to develop new drugs against novel targets in Mab to overcome drug resistance and subsequent treatment failure. In this study, SAICAR synthetase (PurC) from Mab was identified as a promising target for novel antibiotics. An in-house fragment library screen and a high-throughput X-ray crystallographic screen of diverse fragment libraries were explored to provide crucial starting points for fragment elaboration. A series of compounds developed from fragment growing and merging strategies, guided by crystallographic information and careful hit-to-lead optimization, have achieved potent nanomolar binding affinity against the enzyme. Some compounds also show a promising inhibitory effect against Mab and Mtb. This work utilizes a fragment-based design and demonstrates for the first time the potential to develop inhibitors against PurC from Mab.


Assuntos
Mycobacterium abscessus , Antibacterianos/química , Antibacterianos/farmacologia , Cristalografia por Raios X , Humanos , Peptídeo Sintases
11.
Front Microbiol ; 12: 743126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777289

RESUMO

Characterizing Mycobacterium abscessus complex (MABSC) biofilms under host-relevant conditions is essential to the design of informed therapeutic strategies targeted to this persistent, drug-tolerant, population of extracellular bacilli. Using synthetic cystic fibrosis medium (SCFM) which we previously reported to closely mimic the conditions encountered by MABSC in actual cystic fibrosis (CF) sputum and a new model of biofilm formation, we show that MABSC biofilms formed under these conditions are substantially different from previously reported biofilms grown in standard laboratory media in terms of their composition, gene expression profile and stress response. Extracellular DNA (eDNA), mannose-and glucose-containing glycans and phospholipids, rather than proteins and mycolic acids, were revealed as key extracellular matrix (ECM) constituents holding clusters of bacilli together. None of the environmental cues previously reported to impact biofilm development had any significant effect on SCFM-grown biofilms, most likely reflecting the fact that SCFM is a nutrient-rich environment in which MABSC finds a variety of ways of coping with stresses. Finally, molecular determinants were identified that may represent attractive new targets for the development of adjunct therapeutics targeting MABSC biofilms in persons with CF.

12.
Front Microbiol ; 12: 706207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335541

RESUMO

Chronic pulmonary infections caused by non-tuberculous mycobacteria of the Mycobacterium abscessus complex (MABSC) are emerging as a global health problem and pose a threat to susceptible individuals with structural lung disease such as cystic fibrosis. The molecular mechanisms underlying the pathogenicity and intrinsic resistance of MABSC to antibiotics remain largely unknown. The involvement of Msp-type porins in the virulence and biocide resistance of some rapidly growing non-tuberculous mycobacteria and the finding of deletions and rearrangements in the porin genes of serially collected MABSC isolates from cystic fibrosis patients prompted us to investigate the contribution of these major surface proteins to MABSC infection. Inactivation by allelic replacement of the each of the two Msp-type porin genes of M. abscessus subsp. massiliense CIP108297, mmpA and mmpB, led to a marked increase in the virulence and pathogenicity of both mutants in murine macrophages and infected mice. Neither of the mutants were found to be significantly more resistant to antibiotics. These results suggest that adaptation to the host environment rather than antibiotic pressure is the key driver of the emergence of porin mutants during infection.

13.
Front Immunol ; 12: 674643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335572

RESUMO

Bovine tuberculosis is an important animal and zoonotic disease caused by Mycobacterium bovis. The innate immune response is the first line of defense against pathogens and is also crucial for the development of an efficient adaptive immune response. In this study we used an in vitro co-culture model of antigen presenting cells (APC) and autologous lymphocytes derived from peripheral blood mononuclear cells to identify the cell populations and immune mediators that participate in the development of an efficient innate response capable of controlling the intracellular replication of M. bovis. After M. bovis infection, bovine immune cell cultures displayed upregulated levels of iNOS, IL-22 and IFN-γ and the induction of the innate immune response was dependent on the presence of differentiated APC. Among the analyzed M. bovis isolates, only a live virulent M. bovis isolate induced an efficient innate immune response, which was increased upon stimulation of cell co-cultures with the M. bovis culture supernatant. Moreover, we demonstrated that an allelic variation of the early secreted protein ESAT-6 (ESAT6 T63A) expressed in the virulent strain is involved in this increased innate immune response. These results highlight the relevance of the compounds secreted by live M. bovis as well as the variability among the assessed M. bovis strains to induce an efficient innate immune response.


Assuntos
Imunidade Inata/imunologia , Mycobacterium bovis/imunologia , Tuberculose Bovina/imunologia , Animais , Antígenos de Bactérias/imunologia , Bovinos , Técnicas de Cocultura , Citocinas/metabolismo , Interferon gama/metabolismo , Macrófagos , Cultura Primária de Células
15.
Science ; 372(6541)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926925

RESUMO

Although almost all mycobacterial species are saprophytic environmental organisms, a few, such as Mycobacterium tuberculosis, have evolved to cause transmissible human infection. By analyzing the recent emergence and spread of the environmental organism M. abscessus through the global cystic fibrosis population, we have defined key, generalizable steps involved in the pathogenic evolution of mycobacteria. We show that epigenetic modifiers, acquired through horizontal gene transfer, cause saltational increases in the pathogenic potential of specific environmental clones. Allopatric parallel evolution during chronic lung infection then promotes rapid increases in virulence through mutations in a discrete gene network; these mutations enhance growth within macrophages but impair fomite survival. As a consequence, we observe constrained pathogenic evolution while person-to-person transmission remains indirect, but postulate accelerated pathogenic adaptation once direct transmission is possible, as observed for M. tuberculosis Our findings indicate how key interventions, such as early treatment and cross-infection control, might restrict the spread of existing mycobacterial pathogens and prevent new, emergent ones.


Assuntos
Doenças Transmissíveis Emergentes/microbiologia , Evolução Molecular , Aptidão Genética , Pulmão/microbiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/genética , Mycobacterium abscessus/patogenicidade , Pneumonia Bacteriana/microbiologia , Doenças Transmissíveis Emergentes/transmissão , Conjuntos de Dados como Assunto , Epigênese Genética , Transferência Genética Horizontal , Genoma Bacteriano , Humanos , Mutação , Infecções por Mycobacterium não Tuberculosas/transmissão , Pneumonia Bacteriana/transmissão , Virulência/genética
16.
Genet Med ; 23(5): 927-933, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33500570

RESUMO

PURPOSE: Cystic fibrosis (CF), caused by pathogenic variants in the CF transmembrane conductance regulator (CFTR), affects multiple organs including the exocrine pancreas, which is a causal contributor to cystic fibrosis-related diabetes (CFRD). Untreated CFRD causes increased CF-related mortality whereas early detection can improve outcomes. METHODS: Using genetic and easily accessible clinical measures available at birth, we constructed a CFRD prediction model using the Canadian CF Gene Modifier Study (CGS; n = 1,958) and validated it in the French CF Gene Modifier Study (FGMS; n = 1,003). We investigated genetic variants shown to associate with CF disease severity across multiple organs in genome-wide association studies. RESULTS: The strongest predictors included sex, CFTR severity score, and several genetic variants including one annotated to PRSS1, which encodes cationic trypsinogen. The final model defined in the CGS shows excellent agreement when validated on the FGMS, and the risk classifier shows slightly better performance at predicting CFRD risk later in life in both studies. CONCLUSION: We demonstrated clinical utility by comparing CFRD prevalence rates between the top 10% of individuals with the highest risk and the bottom 10% with the lowest risk. A web-based application was developed to provide practitioners with patient-specific CFRD risk to guide CFRD monitoring and treatment.


Assuntos
Fibrose Cística , Diabetes Mellitus , Biomarcadores , Canadá , Fibrose Cística/complicações , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido
17.
ACS Infect Dis ; 6(8): 2235-2248, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32657565

RESUMO

Lipoarabinomannan (LAM) and its biosynthetic precursors, phosphatidylinositol mannosides (PIMs) and lipomannan (LM) play important roles in the interactions of Mycobacterium tuberculosis with phagocytic cells and the modulation of the host immune response, but nothing is currently known of the impact of these cell envelope glycoconjugates on the physiology and pathogenicity of nontuberculous mycobacteria. We here report on the structures of Mycobacterium abscessus PIM, LM, and LAM. Intriguingly, these structures differ from those reported previously in other mycobacterial species in several respects, including the presence of a methyl substituent on one of the mannosyl residues of PIMs as well as the PIM anchor of LM and LAM, the size and branching pattern of the mannan backbone of LM and LAM, and the modification of the arabinan domain of LAM with both succinyl and acetyl substituents. Investigations into the biological significance of some of these structural oddities point to the important role of polysaccharide succinylation on the ability of M. abscessus to enter and survive inside human macrophages and epithelial cells and validate for the first time cell envelope polysaccharides as important modulators of the virulence of this emerging pathogen.


Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Parede Celular , Humanos , Macrófagos , Polissacarídeos
18.
ACS Infect Dis ; 6(8): 2143-2154, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32551551

RESUMO

Understanding the physiological processes underlying the ability of Mycobacterium abscessus to become a chronic pathogen of the cystic fibrosis (CF) lung is important to the development of prophylactic and therapeutic strategies to better control and treat pulmonary infections caused by these bacteria. Gene expression profiling of a diversity of M. abscessus complex isolates points to amino acids being significant sources of carbon and energy for M. abscessus in both CF sputum and synthetic CF medium and to the bacterium undergoing an important metabolic reprogramming in order to adapt to this particular nutritional environment. Cell envelope analyses conducted on the same representative isolates further revealed unexpected structural alterations in major cell surface glycolipids known as the glycopeptidolipids (GPLs). Besides showing an increase in triglycosylated forms of these lipids, CF sputum- and synthetic CF medium-grown isolates presented as yet unknown forms of GPLs representing as much as 10% to 20% of the total GPL content of the cells, in which the classical amino alcohol located at the carboxy terminal of the peptide, alaninol, is replaced with the branched-chain amino alcohol leucinol. Importantly, both these lipid changes were exacerbated by the presence of mucin in the culture medium. Collectively, our results reveal potential new drug targets against M. abscessus in the CF airway and point to mucin as an important host signal modulating the cell surface composition of this pathogen.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Glicolipídeos , Humanos , Mycobacterium abscessus/genética , Escarro
19.
Microbiology (Reading) ; 166(8): 695-706, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32459167

RESUMO

Biofilm-associated infections are difficult to eradicate because of their ability to tolerate antibiotics and evade host immune responses. Amoebae and/or their secreted products may provide alternative strategies to inhibit and disperse biofilms on biotic and abiotic surfaces. We evaluated the potential of five predatory amoebae - Acanthamoeba castellanii, Acanthamoeba lenticulata, Acanthamoeba polyphaga, Vermamoeba vermiformis and Dictyostelium discoideum - and their cell-free secretions to disrupt biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis. The biofilm biomass produced by MRSA and M. bovis was significantly reduced when co-incubated with A. castellanii, A. lenticulata and A. polyphaga, and their corresponding cell-free supernatants (CFS). Acanthamoeba spp. generally produced CFS that mediated biofilm dispersal rather than directly killing the bacteria; however, A. polyphaga CFS demonstrated active killing of MRSA planktonic cells when the bacteria were present at low concentrations. The active component(s) of the A. polyphaga CFS is resistant to freezing, but can be inactivated to differing degrees by mechanical disruption and exposure to heat. D. discoideum and its CFS also reduced preformed M. bovis biofilms, whereas V. vermiformis only decreased M. bovis biofilm biomass when amoebae were added. These results highlight the potential of using select amoebae species or their CFS to disrupt preformed bacterial biofilms.


Assuntos
Amébidos/fisiologia , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/fisiologia , Mycobacterium bovis/fisiologia , Amébidos/classificação , Amébidos/metabolismo , Antibiose , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Mycobacterium bovis/efeitos dos fármacos , Especificidade da Espécie
20.
Int J Mol Sci ; 20(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835712

RESUMO

Mycobacteria produce two major lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), whose broad array of biological activities are tightly related to the fine details of their structure. However, the heterogeneity of these molecules in terms of internal and terminal covalent modifications and complex internal branching patterns represent significant obstacles to their structural characterization. Previously, an endo-α-(1→6)-D-mannanase from Bacillus circulans proved useful in cleaving the mannan backbone of LM and LAM, allowing the reducing end of these molecules to be identified as Manp-(1→6) [Manp-(1→2)]-Ino. Although first reported 45 years ago, no easily accessible form of this enzyme was available to the research community, a fact that may in part be explained by a lack of knowledge of its complete gene sequence. Here, we report on the successful cloning of the complete endo-α-(1→6)-D-mannanase gene from Bacillus circulans TN-31, herein referred to as emn. We further report on the successful production and purification of the glycosyl hydrolase domain of this enzyme and its use to gain further insight into its substrate specificity using synthetic mannoside acceptors as well as LM and phosphatidyl-myo-inositol mannoside precursors purified from mycobacteria.


Assuntos
Bacillus/enzimologia , Bacillus/genética , Clonagem Molecular , Genes Bacterianos , Manosiltransferases/genética , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Manosídeos/metabolismo , Manosiltransferases/química , Manosiltransferases/isolamento & purificação , Mycobacterium smegmatis/metabolismo , Domínios Proteicos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA