Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(13)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753445

RESUMO

Given the global surge in autoimmune diseases, it is critical to evaluate emerging therapeutic interventions. Despite numerous new targeted immunomodulatory therapies, comprehensive approaches to apply and evaluate the effects of these treatments longitudinally are lacking. Here, we leveraged advances in programmable-phage immunoprecipitation methodology to explore the modulation, or lack thereof, of autoantibody profiles, proteome-wide, in both health and disease. Using a custom set of over 730,000 human-derived peptides, we demonstrated that each individual, regardless of disease state, possesses a distinct and complex constellation of autoreactive antibodies. For each individual, the set of resulting autoreactivites constituted a unique immunological fingerprint, or "autoreactome," that was remarkably stable over years. Using the autoreactome as a primary output, we evaluated the relative effectiveness of various immunomodulatory therapies in altering autoantibody repertoires. We found that therapies targeting B cell maturation antigen (BCMA) profoundly altered an individual's autoreactome, while anti-CD19 and anti-CD20 therapies had minimal effects. These data both confirm that the autoreactome comprises autoantibodies secreted by plasma cells and strongly suggest that BCMA or other plasma cell-targeting therapies may be highly effective in treating currently refractory autoantibody-mediated diseases.


Assuntos
Autoanticorpos , Autoimunidade , Proteoma , Humanos , Autoanticorpos/imunologia , Feminino , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Masculino , Imunoterapia Adotiva/métodos , Antígeno de Maturação de Linfócitos B/imunologia , Antígeno de Maturação de Linfócitos B/metabolismo , Adulto , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Antígenos CD19/imunologia , Pessoa de Meia-Idade
2.
Am J Transplant ; 23(3): 416-422, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36748802

RESUMO

Antibodies against foreign human leukocyte antigen (HLA) molecules are barriers to successful organ transplantation. B cell-depleting treatments are used to reduce anti-HLA antibodies but have limited efficacy. We hypothesized that the primary source for anti-HLA antibodies is long-lived plasma cells, which are ineffectively targeted by B cell depletion. To study this, we screened for anti-HLA antibodies in a prospectively enrolled cohort of 49 patients who received chimeric antigen receptor T-cell therapy (CARTx), targeting naïve and memory B cells (CD19-targeted, n = 21) or plasma cells (BCMA-targeted, n = 28) for hematologic malignancies. Longitudinal samples were collected before and up to 1 year after CARTx. All individuals were in sustained remission. We identified 4 participants with anti-HLA antibodies before CD19-CARTx. Despite B cell depletion, anti-HLA antibodies and calculated panel reactive antibody scores were stable for 1 year after CD19-CARTx. Only 1 BCMA-CARTx recipient had pre-CARTx low-level anti-HLA antibodies, with no follow-up samples available. These data implicate CD19neg long-lived plasma cells as an important source for anti-HLA antibodies, a model supported by infrequent HLA sensitization in BCMA-CARTx subjects receiving previous plasma cell-targeted therapies. Thus, plasma cell-targeted therapies may be more effective against HLA antibodies, thereby enabling improved access to organ transplantation and rejection management.


Assuntos
Neoplasias Hematológicas , Imunoterapia Adotiva , Humanos , Antígeno de Maturação de Linfócitos B , Antígenos CD19 , Linfócitos B
3.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35531955

RESUMO

Hematopoietic protein-1 (Hem-1) is a member of the actin-regulatory WASp family verprolin homolog (WAVE) complex. Loss-of-function variants in the NCKAP1L gene encoding Hem-1 were recently discovered to result in primary immunodeficiency disease (PID) in children, characterized by poor specific Ab responses, increased autoantibodies, and high mortality. However, the mechanisms of how Hem-1 deficiency results in PID are unclear. In this study, we utilized constitutive and B cell-specific Nckap1l-KO mice to dissect the importance of Hem-1 in B cell development and functions. B cell-specific disruption of Hem-1 resulted in reduced numbers of recirculating follicular (FO), marginal zone (MZ), and B1 B cells. B cell migration in response to CXCL12 and -13 were reduced. T-independent Ab responses were nearly abolished, resulting in failed protective immunity to Streptococcus pneumoniae challenge. In contrast, T-dependent IgM and IgG2c, memory B cell, and plasma cell responses were more robust relative to WT control mice. B cell-specific Hem-1-deficient mice had increased autoantibodies against multiple autoantigens, and this correlated with hyperresponsive BCR signaling and increased representation of CD11c+T-bet+ age-associated B cell (ABC cells) - alterations associated with autoimmune diseases. These results suggest that dysfunctional B cells may be part of a mechanism explaining why loss-of-function Hem-1 variants result in recurring infections and autoimmunity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Autoanticorpos , Doenças Autoimunes , Linfócitos B , Imunidade Humoral , Actinas , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Linfócitos B/imunologia , Camundongos , Camundongos Knockout
4.
Eur J Immunol ; 51(9): 2225-2236, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34146342

RESUMO

Polymorphisms in TACI, a BAFF family cytokine receptor, are linked to diverse human immune disorders including common variable immunodeficiency (CVID) and systemic lupus erythematosus (SLE). Functional studies of individual variants show modest impacts on surface TACI expression and/or downstream signal transduction, indicating that relatively subtle variation in TACI activity can impact human B-cell biology. However, significant complexity underlies TACI biology, including both positive and negative regulation of physiologic and pathogenic B-cell responses. To model these contradictory events, we compared the functional impact of TACI deletion on separate models of murine SLE driven by T cell-independent and -dependent breaks in B-cell tolerance. First, we studied whether reduced surface TACI expression was sufficient to protect against progressive BAFF-mediated systemic autoimmunity. Strikingly, despite a relatively modest impact on surface TACI levels, TACI haploinsufficiency markedly reduced pathogenic RNA-associated autoantibody titers and conferred long-term protection from BAFF-driven lupus nephritis. In contrast, B cell-intrinsic TACI deletion exerted a limited impact of autoantibody generation in murine lupus characterized by spontaneous germinal center formation and T cell-dependent humoral autoimmunity. Together, these combined data provide new insights into TACI biology and highlight how TACI signals must be tightly regulated during protective and pathogenic B-cell responses.


Assuntos
Autoimunidade/genética , Fator Ativador de Células B/imunologia , Nefrite Lúpica/genética , Nefrite Lúpica/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Autoimunidade/imunologia , Fator Ativador de Células B/antagonistas & inibidores , Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/genética , Linfócitos B/imunologia , Quimera , Feminino , Haploinsuficiência/genética , Imunossupressores/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/imunologia
5.
Immunol Rev ; 292(1): 102-119, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31562657

RESUMO

The B cell activating factor (BAFF) inhibitor, belimumab, is the first biologic drug approved for the treatment of SLE, and exhibits modest, but durable, efficacy in decreasing disease flares and organ damage. BAFF and its homolog APRIL are TNF-like cytokines that support the survival and differentiation of B cells at distinct developmental stages. BAFF is a crucial survival factor for transitional and mature B cells that acts as rheostat for the maturation of low-affinity autoreactive cells. In addition, BAFF augments innate B cell responses via complex interactions with the B cell receptor (BCR) and Toll like receptor (TLR) pathways. In this manner, BAFF impacts autoreactive B cell activation via extrafollicular pathways and fine tunes affinity selection within germinal centers (GC). Finally, BAFF and APRIL support plasma cell survival, with differential impacts on IgM- and IgG-producing populations. Therapeutically, BAFF and combined BAFF/APRIL inhibition delays disease onset in diverse murine lupus strains, although responsiveness to BAFF inhibition is model dependent, in keeping with heterogeneity in clinical responses to belimumab treatment in humans. In this review, we discuss the mechanisms whereby BAFF/APRIL signals promote autoreactive B cell activation, discuss whether altered selection accounts for therapeutic benefits of BAFF inhibition, and address whether new insights into BAFF/APRIL family complexity can be exploited to improve human lupus treatments.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Fator Ativador de Células B/antagonistas & inibidores , Tolerância Imunológica/efeitos dos fármacos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Animais , Fator Ativador de Células B/imunologia , Fator Ativador de Células B/metabolismo , Humanos , Tolerância Imunológica/imunologia , Imunossupressores/uso terapêutico , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
6.
J Immunol ; 201(11): 3258-3268, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30373855

RESUMO

The B cell survival cytokine BAFF has been linked with the pathogenesis of systemic lupus erythematosus (SLE). BAFF binds distinct BAFF-family surface receptors, including the BAFF-R and transmembrane activator and CAML interactor (TACI). Although originally characterized as a negative regulator of B cell activation, TACI signals are critical for class-switched autoantibody (autoAb) production in BAFF transgenic mice. Consistent with this finding, a subset of transitional splenic B cells upregulate surface TACI expression and contribute to BAFF-driven autoAb. In the current study, we interrogated the B cell signals required for transitional B cell TACI expression and Ab production. Surprisingly, despite established roles for dual BCR and TLR signals in autoAb production in SLE, signals downstream of these receptors exerted distinct impacts on transitional B cell TACI expression and autoAb titers. Whereas loss of BCR signals prevented transitional B cell TACI expression and resulted in loss of serum autoAb across all Ig isotypes, lack of TLR signals exerted a more limited impact restricted to autoAb class-switch recombination without altering transitional B cell TACI expression. Finally, in parallel with the protective effect of TACI deletion, loss of BAFF-R signaling also protected against BAFF-driven autoimmunity. Together, these findings highlight how multiple signaling pathways integrate to promote class-switched autoAb production by transitional B cells, events that likely impact the pathogenesis of SLE and other BAFF-dependent autoimmune diseases.


Assuntos
Autoanticorpos/metabolismo , Glomerulonefrite por IGA/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Glicoproteínas de Membrana/metabolismo , Células Precursoras de Linfócitos B/fisiologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptor 7 Toll-Like/metabolismo , Animais , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Receptor do Fator Ativador de Células B/genética , Modelos Animais de Doenças , Humanos , Switching de Imunoglobulina , Ativação Linfocitária , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptor Cross-Talk , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais , Receptor 7 Toll-Like/genética , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo
7.
Kidney Int ; 94(4): 728-740, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29907458

RESUMO

B cells are known to promote the pathogenesis of systemic lupus erythematosus (SLE) via the production of pathogenic anti-nuclear antibodies. However, the signals required for autoreactive B cell activation and the immune mechanisms whereby B cells impact lupus nephritis pathology remain poorly understood. The B cell survival cytokine B cell activating factor of the TNF Family (BAFF) has been implicated in the pathogenesis of SLE and lupus nephritis in both animal models and human clinical studies. Although the BAFF receptor has been predicted to be the primary BAFF family receptor responsible for BAFF-driven humoral autoimmunity, in the current study we identify a critical role for signals downstream of Transmembrane Activator and CAML Interactor (TACI) in BAFF-dependent lupus nephritis. Whereas transgenic mice overexpressing BAFF develop progressive membranoproliferative glomerulonephritis, albuminuria and renal dysfunction, TACI deletion in BAFF-transgenic mice provided long-term (about 1 year) protection from renal disease. Surprisingly, disease protection in this context was not explained by complete loss of glomerular immune complex deposits. Rather, TACI deletion specifically reduced endocapillary, but not mesangial, immune deposits. Notably, although excess BAFF promoted widespread breaks in B cell tolerance, BAFF-transgenic antibodies were enriched for RNA- relative to DNA-associated autoantigen reactivity. These RNA-associated autoantibody specificities were specifically reduced by TACI or Toll-like receptor 7 deletion. Thus, our study provides important insights into the autoantibody specificities driving proliferative lupus nephritis, and suggests that TACI inhibition may be novel and effective treatment strategy in lupus nephritis.


Assuntos
Autoanticorpos/sangue , Fator Ativador de Células B/genética , Fator Ativador de Células B/metabolismo , Nefrite Lúpica/genética , Ribonucleoproteínas/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Albuminúria/genética , Albuminúria/urina , Animais , Fator Ativador de Células B/sangue , Fator Ativador de Células B/imunologia , Linfócitos B/imunologia , Creatinina/urina , Progressão da Doença , Feminino , Hipergamaglobulinemia/genética , Imunoglobulinas/sangue , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Ativação Linfocitária/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
8.
Mol Ther ; 26(2): 456-467, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29273498

RESUMO

The ability to engineer primary human B cells to differentiate into long-lived plasma cells and secrete a de novo protein may allow the creation of novel plasma cell therapies for protein deficiency diseases and other clinical applications. We initially developed methods for efficient genome editing of primary B cells isolated from peripheral blood. By delivering CRISPR/CRISPR-associated protein 9 (Cas9) ribonucleoprotein (RNP) complexes under conditions of rapid B cell expansion, we achieved site-specific gene disruption at multiple loci in primary human B cells (with editing rates of up to 94%). We used this method to alter ex vivo plasma cell differentiation by disrupting developmental regulatory genes. Next, we co-delivered RNPs with either a single-stranded DNA oligonucleotide or adeno-associated viruses containing homologous repair templates. Using either delivery method, we achieved targeted sequence integration at high efficiency (up to 40%) via homology-directed repair. This method enabled us to engineer plasma cells to secrete factor IX (FIX) or B cell activating factor (BAFF) at high levels. Finally, we show that introduction of BAFF into plasma cells promotes their engraftment into immunodeficient mice. Our results highlight the utility of genome editing in studying human B cell biology and demonstrate a novel strategy for modifying human plasma cells to secrete therapeutic proteins.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Edição de Genes , Engenharia Genética , Plasmócitos/imunologia , Plasmócitos/metabolismo , Reparo de DNA por Recombinação , Animais , Biomarcadores , Proteína 9 Associada à CRISPR , Citocinas/metabolismo , Dependovirus/genética , Loci Gênicos , Vetores Genéticos/genética , Humanos , Imunoterapia , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Receptores CCR5/genética , Transdução Genética
9.
J Exp Med ; 214(11): 3207-3217, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-28899868

RESUMO

Recent studies have identified critical roles for B cells in triggering autoimmune germinal centers (GCs) in systemic lupus erythematosus (SLE) and other disorders. The mechanisms whereby B cells facilitate loss of T cell tolerance, however, remain incompletely defined. Activated B cells produce interleukin 6 (IL-6), a proinflammatory cytokine that promotes T follicular helper (TFH) cell differentiation. Although B cell IL-6 production correlates with disease severity in humoral autoimmunity, whether B cell-derived IL-6 is required to trigger autoimmune GCs has not, to our knowledge, been addressed. Here, we report the unexpected finding that a lack of B cell-derived IL-6 abrogates spontaneous GC formation in mouse SLE, resulting in loss of class-switched autoantibodies and protection from systemic autoimmunity. Mechanistically, B cell IL-6 production was enhanced by IFN-γ, consistent with the critical roles for B cell-intrinsic IFN-γ receptor signals in driving autoimmune GC formation. Together, these findings identify a key mechanism whereby B cells drive autoimmunity via local IL-6 production required for TFH differentiation and autoimmune GC formation.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Interleucina-6/imunologia , Animais , Autoanticorpos/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Células Cultivadas , Citometria de Fluxo , Centro Germinativo/metabolismo , Humanos , Interferon gama/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
10.
Mol Ther Methods Clin Dev ; 4: 192-203, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28345004

RESUMO

Gene editing by homology-directed recombination (HDR) can be used to couple delivery of a therapeutic gene cassette with targeted genomic modifications to generate engineered human T cells with clinically useful profiles. Here, we explore the functionality of therapeutic cassettes delivered by these means and test the flexibility of this approach to clinically relevant alleles. Because CCR5-negative T cells are resistant to HIV-1 infection, CCR5-negative anti-CD19 chimeric antigen receptor (CAR) T cells could be used to treat patients with HIV-associated B cell malignancies. We show that targeted delivery of an anti-CD19 CAR cassette to the CCR5 locus using a recombinant AAV homology template and an engineered megaTAL nuclease results in T cells that are functionally equivalent, in both in vitro and in vivo tumor models, to CAR T cells generated by random integration using lentiviral delivery. With the goal of developing off-the-shelf CAR T cell therapies, we next targeted CARs to the T cell receptor alpha constant (TRAC) locus by HDR, producing TCR-negative anti-CD19 CAR and anti-B cell maturation antigen (BCMA) CAR T cells. These novel cell products exhibited in vitro cytolytic activity against both tumor cell lines and primary cell targets. Our combined results indicate that high-efficiency HDR delivery of therapeutic genes may provide a flexible and robust method that can extend the clinical utility of cell therapeutics.

11.
J Immunol ; 197(12): 4529-4534, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27837104

RESUMO

Patients with systemic lupus erythematosus exhibit accelerated atherosclerosis, a chronic inflammatory disease of the arterial wall. The impact of B cells in atherosclerosis is controversial, with both protective and pathogenic roles described. For example, natural IgM binding conserved oxidized lipid epitopes protect against atherosclerosis, whereas anti-oxidized low-density lipoprotein (oxLDL) IgG likely promotes disease. Because BAFF promotes B cell class-switch recombination and humoral autoimmunity, we hypothesized that excess BAFF would accelerate atherosclerosis. In contrast, BAFF overexpression markedly reduced hypercholesterolemia and atherosclerosis in hyperlipidemic mice. BAFF-mediated atheroprotection required B cells and was associated with increased protective anti-oxLDL IgM. Surprisingly, high-titer anti-oxLDL IgM production and reduced atherosclerosis was dependent on the BAFF family receptor transmembrane activator and CAML interactor. In summary, we identified a novel role for B cell-specific, BAFF-dependent transmembrane activator and CAML interactor signals in atherosclerosis pathogenesis, of particular relevance to the use of BAFF-targeted therapies in systemic lupus erythematosus.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aterosclerose/imunologia , Fator Ativador de Células B/metabolismo , Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Animais , Autoanticorpos/sangue , Fator Ativador de Células B/genética , Células Cultivadas , Humanos , Switching de Imunoglobulina , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína Transmembrana Ativadora e Interagente do CAML/genética
12.
J Exp Med ; 213(5): 733-50, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27069113

RESUMO

Dysregulated germinal center (GC) responses are implicated in the pathogenesis of human autoimmune diseases, including systemic lupus erythematosus (SLE). Although both type 1 and type 2 interferons (IFNs) are involved in lupus pathogenesis, their respective impacts on the establishment of autoimmune GCs has not been addressed. In this study, using a chimeric model of B cell-driven autoimmunity, we demonstrate that B cell type 1 IFN receptor signals accelerate, but are not required for, lupus development. In contrast, B cells functioning as antigen-presenting cells initiate CD4(+) T cell activation and IFN-γ production, and strikingly, B cell-intrinsic deletion of the IFN-γ receptor (IFN-γR) abrogates autoimmune GCs, class-switched autoantibodies (auto-Abs), and systemic autoimmunity. Mechanistically, although IFN-γR signals increase B cell T-bet expression, B cell-intrinsic deletion of T-bet exerts an isolated impact on class-switch recombination to pathogenic auto-Ab subclasses without impacting GC development. Rather, in both mouse and human B cells, IFN-γ synergized with B cell receptor, toll-like receptor, and/or CD40 activation signals to promote cell-intrinsic expression of the GC master transcription factor, B cell lymphoma 6 protein. Our combined findings identify a novel B cell-intrinsic mechanism whereby IFN signals promote lupus pathogenesis, implicating this pathway as a potential therapeutic target in SLE.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Receptores de Interferon/imunologia , Transdução de Sinais/imunologia , Animais , Autoanticorpos/imunologia , Linfócitos B/patologia , Centro Germinativo/patologia , Interferon gama/genética , Interferon gama/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6/genética , Receptores de Interferon/genética , Transdução de Sinais/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptor de Interferon gama
13.
J Immunol ; 196(9): 3525-31, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27022196

RESUMO

Mice overexpressing B cell activating factor of the TNF family (BAFF) develop systemic autoimmunity characterized by class-switched anti-nuclear Abs. Transmembrane activator and CAML interactor (TACI) signals are critical for BAFF-mediated autoimmunity, but the B cell developmental subsets undergoing TACI-dependent activation in settings of excess BAFF remain unclear. We report that, although surface TACI expression is usually limited to mature B cells, excess BAFF promotes the expansion of TACI-expressing transitional B cells. TACI(+) transitional cells from BAFF-transgenic mice are characterized by an activated, cycling phenotype, and the TACI(+) cell subset is specifically enriched for autoreactivity, expresses activation-induced cytidine deaminase and T-bet, and exhibits evidence of somatic hypermutation. Consistent with a potential contribution to BAFF-mediated humoral autoimmunity, TACI(+) transitional B cells from BAFF-transgenic mice spontaneously produce class-switched autoantibodies ex vivo. These combined findings highlight a novel mechanism through which BAFF promotes humoral autoimmunity via direct, TACI-dependent activation of transitional B cells.


Assuntos
Autoanticorpos/biossíntese , Fator Ativador de Células B/metabolismo , Células Precursoras de Linfócitos B/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Animais , Autoanticorpos/imunologia , Autoimunidade , Fator Ativador de Células B/genética , Subpopulações de Linfócitos B/imunologia , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Células Precursoras de Linfócitos B/fisiologia , Proteína Transmembrana Ativadora e Interagente do CAML/genética
14.
J Immunol ; 188(5): 2065-9, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22291190

RESUMO

Mechanistic understanding of RP105 has been confounded by the fact that this TLR homolog has appeared to have opposing, cell type-specific effects on TLR4 signaling. Although RP105 inhibits TLR4-driven signaling in cell lines and myeloid cells, impaired LPS-driven proliferation by B cells from RP105(-/-) mice has suggested that RP105 facilitates TLR4 signaling in B cells. In this article, we show that modulation of B cell proliferation by RP105 is not a function of B cell-intrinsic expression of RP105, and identify a mechanistic role for dysregulated BAFF expression in the proliferative abnormalities of B cells from RP105(-/-) mice: serum BAFF levels are elevated in RP105(-/-) mice, and partial BAFF neutralization rescues aberrant B cell proliferative responses in such mice. These data indicate that RP105 does not have dichotomous effects on TLR4 signaling and emphasize the need for caution in interpreting the results of global genetic deletion.


Assuntos
Antígenos CD/fisiologia , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Proliferação de Células , Receptor 4 Toll-Like/fisiologia , Animais , Antígenos CD/genética , Fator Ativador de Células B/antagonistas & inibidores , Fator Ativador de Células B/biossíntese , Fator Ativador de Células B/sangue , Subpopulações de Linfócitos B/metabolismo , Células Cultivadas , Inativação Gênica/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos
15.
J Exp Med ; 208(10): 2033-42, 2011 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21875954

RESUMO

Patients with the immunodeficiency Wiskott-Aldrich syndrome (WAS) frequently develop systemic autoimmunity. Here, we demonstrate that mutation of the WAS gene results in B cells that are hyperresponsive to B cell receptor and Toll-like receptor (TLR) signals in vitro, thereby promoting a B cell-intrinsic break in tolerance. Whereas this defect leads to autoantibody production in WAS protein-deficient (WASp(-/-)) mice without overt disease, chimeric mice in which only the B cell lineage lacks WASp exhibit severe autoimmunity characterized by spontaneous germinal center formation, class-switched autoantibodies, renal histopathology, and early mortality. Both T cell help and B cell-intrinsic TLR engagement play important roles in promoting disease in this model, as depletion with anti-CD4 antibodies or generation of chimeric mice with B cells deficient in both WASp and MyD88 prevented development of autoimmune disease. These data highlight the potentially harmful role for cell-intrinsic loss of B cell tolerance in the setting of normal T cell function, and may explain why WAS patients with mixed chimerism after stem cell transplantation often develop severe humoral autoimmunity.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Proteína da Síndrome de Wiskott-Aldrich/deficiência , Animais , Anticorpos Antinucleares/imunologia , Autoanticorpos/imunologia , Linfócitos B/fisiologia , Linfócitos T CD4-Positivos/imunologia , Quimera , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Receptores Toll-Like/imunologia , Proteína da Síndrome de Wiskott-Aldrich/genética
16.
Am J Pathol ; 171(4): 1395-404, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17823293

RESUMO

CD39/ecto-nucleoside triphosphate diphosphohydrolase-type-1 (ENTPD1) is the dominant vascular ecto-nucleotidase that catalyzes the phosphohydrolysis of extracellular nucleotides in the blood and extracellular space. This ecto-enzymatic process modulates endothelial cell, leukocyte, and platelet purinergic receptor-mediated responses to extracellular nucleotides in the setting of thrombosis and vascular inflammation. We show here that deletion of Cd39/Entpd1 results in abrogation of angiogenesis, causing decreased growth of implanted tumors and inhibiting development of pulmonary metastases. Qualitative abnormalities of Cd39-null endothelial cell adhesion and integrin dysfunction were demonstrated in vitro. These changes were associated with decreased activation of focal adhesion kinase and extracellular signaling-regulated kinase-1 and -2 in endothelial cells. Our data indicate novel links between CD39/ENTPD1, extracellular nucleotide-mediated signaling, and vascular endothelial cell integrin function that impact on angiogenesis and tumor growth.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Integrinas/metabolismo , Neovascularização Patológica/genética , Purinas/metabolismo , Animais , Antígenos CD/genética , Apirase/genética , Adesão Celular , Proliferação de Células , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Deleção de Genes , Integrina alfaVbeta3/metabolismo , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/patologia , Camundongos , Camundongos Mutantes , Transplante de Neoplasias , Neovascularização Patológica/metabolismo , Proteínas Quinases/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA