Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 122(12): 2475-2488, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37138517

RESUMO

The physical stability of peptide-based drugs is of great interest to the pharmaceutical industry. Glucagon-like peptide 1 (GLP-1) is a 31-amino acid peptide hormone, the analogs of which are frequently used in the treatment of type 2 diabetes. We investigated the physical stability of GLP-1 and its C-terminal amide derivative, GLP-1-Am, both of which aggregate into amyloid fibrils. While off-pathway oligomers have been proposed to explain the unusual aggregation kinetics observed previously for GLP-1 under specific conditions, these oligomers have not been studied in any detail. Such states are important as they may represent potential sources of cytotoxicity and immunogenicity. Here, we identified and isolated stable, low-molecular-weight oligomers of GLP-1 and GLP-1-Am, using size-exclusion chromatography. Under the conditions studied, isolated oligomers were shown to be resistant to fibrillation or dissociation. These oligomers contain between two and five polypeptide chains and they have a highly disordered structure as indicated by a variety of spectroscopic techniques. They are highly stable with respect to time, temperature, or agitation despite their noncovalent character, which was established using liquid chromatography-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results provide evidence of stable, low-molecular-weight oligomers that are formed by an off-pathway mechanism which competes with amyloid fibril formation.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Humanos , Peptídeos , Amiloide/química , Cromatografia em Gel , Fragmentos de Peptídeos/química , Peptídeos beta-Amiloides/química
2.
Chem Sci ; 13(30): 8781-8790, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35975158

RESUMO

Antibody-drug conjugates (ADCs) are valuable therapeutic entities which leverage the specificity of antibodies to selectively deliver cytotoxins to antigen-expressing targets such as cancer cells. However, current methods for their construction still suffer from a number of shortcomings. For instance, using a single modification technology to modulate the drug-to-antibody ratio (DAR) in integer increments while maintaining homogeneity and stability remains exceptionally challenging. Herein, we report a novel method for the generation of antibody conjugates with modular cargo loading from native antibodies. Our approach relies on a new class of disulfide rebridging linkers, which can react with eight cysteine residues, thereby effecting all-in-one bridging of all four interchain disulfides in an IgG1 antibody with a single linker molecule. Modification of the antibody with the linker in a 1 : 1 ratio enabled the modulation of cargo loading in a quick and selective manner through derivatization of the linker with varying numbers of payload attachment handles to allow for attachment of either 1, 2, 3 or 4 payloads (fluorescent dyes or cytotoxins). Assessment of the biological activity of these conjugates demonstrated their exceptional stability in human plasma and utility for cell-selective cytotoxin delivery or imaging/diagnostic applications.

3.
MAbs ; 14(1): 2095701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799328

RESUMO

Although monoclonal antibodies have greatly improved cancer therapy, they can trigger side effects due to on-target, off-tumor toxicity. Over the past decade, strategies have emerged to successfully mask the antigen-binding site of antibodies, such that they are only activated at the relevant site, for example, after proteolytic cleavage. However, the methods for designing an ideal affinity-based mask and what parameters are important are not yet well understood. Here, we undertook mechanistic studies using three masks with different properties and identified four critical factors: binding site and affinity, as well as association and dissociation rate constants, which also played an important role. HDX-MS was used to identify the location of binding sites on the antibody, which were subsequently validated by obtaining a high-resolution crystal structure for one of the mask-antibody complexes. These findings will inform future designs of optimal affinity-based masks for antibodies and other therapeutic proteins.


Assuntos
Anticorpos Monoclonais , Anticorpos Monoclonais/química , Afinidade de Anticorpos , Sítios de Ligação
4.
J Am Soc Mass Spectrom ; 33(7): 1204-1212, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35609180

RESUMO

There is an increasing emphasis on the critical evaluation of interbatch purity and physical stability of therapeutic peptides. This is due to concerns over the impact that product- and process-related impurities may have on safety and efficacy of this class of drug. Aspartic acid isomerization to isoaspartic acid is a common isobaric impurity that can be very difficult to identify without first synthesizing isoAsp peptide standards for comparison by chromatography. As such, analytical tools that can determine if an Asp residue has isomerized, as well as the site of isomerization within the peptide sequence, are highly sought after. Ion mobility-mass spectrometry is a conformation-selective method that has developed rapidly in recent years particularly with the commercialization of traveling wave ion mobility instruments. This study employed a cyclic ion mobility (cIMS) mass spectrometry system to investigate the conformational characteristics of a therapeutic peptide and three synthetic isomeric forms, each with a single Asp residue isomerized to isoAsp. cIMS was able to not only show distinct conformational differences between each peptide but crucially, in conjunction with a simple workflow for comparing ion mobility data, it correctly located which Asp residue in each peptide had isomerized to isoAsp. This work highlights the value of cIMS as a potential screening tool in the analysis of therapeutic peptides prone to the formation of isoAsp impurities.


Assuntos
Ácido Aspártico , Peptídeos , Ácido Aspártico/química , Cromatografia Líquida de Alta Pressão/métodos , Isomerismo , Espectrometria de Massas/métodos , Peptídeos/química
5.
Bioconjug Chem ; 32(8): 1834-1844, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34369158

RESUMO

Antibody-drug conjugates have become one of the most actively developed classes of drugs in recent years. Their great potential comes from combining the strengths of large and small molecule therapeutics: the exquisite specificity of antibodies and the highly potent nature of cytotoxic compounds. More recently, the approach of engineering antibody-drug conjugate scaffolds to achieve highly controlled drug to antibody ratios has focused on substituting or inserting cysteines to facilitate site-specific conjugation. Herein, we characterize an antibody scaffold engineered with an inserted cysteine that formed an unexpected disulfide bridge during manufacture. A combination of mass spectrometry and biophysical techniques have been used to understand how the additional disulfide bridge forms, interconverts, and changes the stability and structural dynamics of the antibody intermediate. This quantitative and structurally resolved model of the local and global changes in structure and dynamics associated with the engineering and subsequent disulfide-bonded variant can assist future engineering strategies.


Assuntos
Especificidade de Anticorpos , Antineoplásicos/química , Imunoconjugados , Compostos de Sulfidrila/química , Anticorpos Monoclonais , Sítios de Ligação , Desenho de Fármacos , Modelos Moleculares , Conformação Proteica
6.
Sci Rep ; 9(1): 2421, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787316

RESUMO

Knots in proteins are hypothesized to make them resistant to enzymatic degradation by ATP-dependent proteases and recent studies have shown that whereas ClpXP can easily degrade a protein with a shallow 31 knot, it cannot degrade 52-knotted proteins if degradation is initiated at the C-terminus. Here, we present detailed studies of the degradation of both 31- and 52-knotted proteins by ClpXP using numerous constructs where proteins are tagged for degradation at both N- and C-termini. Our results confirm and extend earlier work and show that ClpXP can easily degrade a deeply 31-knotted protein. In contrast to recently published work on the degradation of 52-knotted proteins, our results show that the ClpXP machinery can also easily degrade these proteins. However, the degradation depends critically on the location of the degradation tag and the local stability near the tag. Our results are consistent with mechanisms in which either the knot simply slips along the polypeptide chain and falls off the free terminus, or one in which the tightened knot enters the translocation pore of ClpXP. Results of experiments on knotted protein fusions with a highly stable domain show partial degradation and the formation of degradation intermediates.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Escherichia coli/genética , Cinética , Proteólise , ATPases Associadas a Diversas Atividades Celulares/química , Endopeptidase Clp , Escherichia coli/enzimologia , Proteínas de Escherichia coli , Modelos Moleculares , Dobramento de Proteína
7.
Biophys J ; 111(12): 2587-2599, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28002735

RESUMO

An increasing number of proteins that contain topological knots have been identified over the past two decades; however, their folding mechanisms are still not well understood. UCH-L1 has a 52-knotted topology. Here, we constructed a series of variants that contain a single tryptophan at different locations along the polypeptide chain. A study of the thermodynamic properties of the variants shows that the structure of UCH-L1 is remarkably tolerant to incorporation of bulky tryptophan side chains. Comprehensive kinetic studies of the variants reveal that they fold via parallel pathways on which there are two intermediate states very similar to wild-type UCH-L1. The structures of the intermediate states do not change significantly with mutation and therefore occupy local minima on the energy landscape that have relatively narrow basins. The kinetic studies also establish that there are considerably more tertiary interactions in the intermediate states than results from previous NMR studies suggested. The two intermediates differ from each other in the extent to which tertiary interactions between the highly stable central ß-sheet and flanking α-helices and loop regions are formed. There is strong evidence that these states are aggregation prone. The transition states from both I1 and I2 to the native state are plastic and change with mutation and denaturant concentration. Previous studies indicated that the threading event that creates the 52 knot occurs during these steps, suggesting that there is a broad energy barrier consistent with the chain undergoing some searching of conformational space as the threading takes place.


Assuntos
Engenharia de Proteínas , Dobramento de Proteína , Triptofano , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutação , Multimerização Proteica , Redobramento de Proteína , Estrutura Quaternária de Proteína , Desdobramento de Proteína , Termodinâmica
8.
Proc Natl Acad Sci U S A ; 113(27): 7533-8, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27339135

RESUMO

Spontaneous folding of a polypeptide chain into a knotted structure remains one of the most puzzling and fascinating features of protein folding. The folding of knotted proteins is on the timescale of minutes and thus hard to reproduce with atomistic simulations that have been able to reproduce features of ultrafast folding in great detail. Furthermore, it is generally not possible to control the topology of the unfolded state. Single-molecule force spectroscopy is an ideal tool for overcoming this problem: by variation of pulling directions, we controlled the knotting topology of the unfolded state of the 52-knotted protein ubiquitin C-terminal hydrolase isoenzyme L1 (UCH-L1) and have therefore been able to quantify the influence of knotting on its folding rate. Here, we provide direct evidence that a threading event associated with formation of either a 31 or 52 knot, or a step closely associated with it, significantly slows down the folding of UCH-L1. The results of the optical tweezers experiments highlight the complex nature of the folding pathway, many additional intermediate structures being detected that cannot be resolved by intrinsic fluorescence. Mechanical stretching of knotted proteins is also of importance for understanding the possible implications of knots in proteins for cellular degradation. Compared with a simple 31 knot, we measure a significantly larger size for the 52 knot in the unfolded state that can be further tightened with higher forces. Our results highlight the potential difficulties in degrading a 52 knot compared with a 31 knot.


Assuntos
Redobramento de Proteína , Desdobramento de Proteína , Ubiquitina Tiolesterase/química , Pinças Ópticas , Imagem Individual de Molécula
9.
J Mol Biol ; 428(11): 2507-2520, 2016 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-27067109

RESUMO

The human ubiquitin C-terminal hydrolase, UCH-L1, is an abundant neuronal deubiquitinase that is associated with Parkinson's disease. It contains a complex Gordian knot topology formed by the polypeptide chain alone. Using a combination of fluorescence-based kinetic measurements, we show that UCH-L1 has two distinct kinetic folding intermediates that are transiently populated on parallel pathways between the denatured and native states. NMR hydrogen-deuterium exchange (HDX) experiments indicate the presence of partially unfolded forms (PUFs) of UCH-L1 under native conditions. HDX measurements as a function of urea concentration were used to establish the structure of the PUFs and pulse-labelled HDX NMR was used to show that the PUFs and the folding intermediates are likely the same species. In both cases, a similar stable core encompassing most of the central ß-sheet is highly structured and α-helix 3, which is partially formed, packs against it. In contrast to the stable ß-sheet core, the peripheral α-helices display significant local fluctuations leading to rapid exchange. The results also suggest that the main difference between the two kinetic intermediates is structure and packing of α-helices 3 and 7 and the degree of structure in ß-strand 5. Together, the fluorescence and NMR results establish that UCH-L1 neither folds through a continuum of pathways nor by a single discrete pathway. Its folding is complex, the ß-sheet core forms early and is present in both intermediate states, and the rate-limiting step which is likely to involve the threading of the chain to form the 52-knot occurs late on the folding pathway.


Assuntos
Ubiquitina Tiolesterase/metabolismo , Deutério/metabolismo , Medição da Troca de Deutério/métodos , Humanos , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética/métodos , Conformação Proteica em alfa-Hélice/fisiologia , Conformação Proteica em Folha beta/fisiologia , Desnaturação Proteica , Dobramento de Proteína
10.
FASEB J ; 30(2): 564-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26443817

RESUMO

We have investigated the potential role of molecular chaperones as modulators of the immune response by using α-synuclein (αSyn) as an aggregation-prone model protein. We first performed an in vitro immunoscreening with 21 preselected candidate chaperones and selected 2 from this set as displaying immunological activity with differential profiles, Grp94/Gp96 and FKBP4/52. We then immunized mice with both chaperone/α-synuclein combinations using monomeric or oligomeric α-synuclein (MαSyn or OαSyn, respectively), and we characterized the immune response generated in each case. We found that Grp94 promoted αSyn-specific T-helper (Th)1/Th17 and IgG1 antibody responses (up to a 3-fold increase) with MαSyn and OαSyn, respectively, coupled to a Th2-type general phenotype (generating 2.5-fold higher IgG1/IgG2 levels). In addition, we observed that FKBP4 favored a Th1-skewed phenotype with MαSyn but strongly supported a Th2-type phenotype with OαSyn (with a 3-fold higher IL-10/IFN-γ serum levels). Importantly, results from adoptive transfer of splenocytes from immunized animals in a Parkinson's disease mouse model indicates that these effects are robust, stable in time, and physiologically relevant. Taken together, Grp94 and FKBP4 are able to generate differential immune responses to α-synuclein-based immunizations, depending both on the nature of the chaperone and on the aggregation state of α-synuclein. Our work reveals that several chaperones are potential modulators of the immune response and suggests that different chaperones could be exploited to redirect the amyloid-elicited immunity both for basic studies of the immunological processes associated with neurodegeneration and for immunotherapy of pathologies associated with protein misfolding and aggregation.


Assuntos
Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , alfa-Sinucleína/metabolismo , Imunidade Adaptativa , Animais , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Imunidade Inata , Masculino , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Dobramento de Proteína , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/imunologia , alfa-Sinucleína/genética
11.
J Phys Condens Matter ; 27(35): 354106, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26290953

RESUMO

Understanding the mechanism by which a polypeptide chain thread itself spontaneously to attain a knotted conformation has been a major challenge in the field of protein folding. HP0242 is a homodimeric protein from Helicobacter pylori with intertwined helices to form a unique pseudo-knotted folding topology. A tandem HP0242 repeat has been constructed to become the first engineered trefoil-knotted protein. Its small size renders it a model system for computational analyses to examine its folding and knotting pathways. Here we report a multi-parametric study on the folding stability and kinetics of a library of HP0242 variants, including the trefoil-knotted tandem HP0242 repeat, using far-UV circular dichroism and fluorescence spectroscopy. Equilibrium chemical denaturation of HP0242 variants shows the presence of highly populated dimeric and structurally heterogeneous folding intermediates. Such equilibrium folding intermediates retain significant amount of helical structures except those at the N- and C-terminal regions in the native structure. Stopped-flow fluorescence measurements of HP0242 variants show that spontaneous refolding into knotted structures can be achieved within seconds, which is several orders of magnitude faster than previously observed for other knotted proteins. Nevertheless, the complex chevron plots indicate that HP0242 variants are prone to misfold into kinetic traps, leading to severely rolled-over refolding arms. The experimental observations are in general agreement with the previously reported molecular dynamics simulations. Based on our results, kinetic folding pathways are proposed to qualitatively describe the complex folding processes of HP0242 variants.


Assuntos
Proteínas de Bactérias/química , Helicobacter pylori/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Cinética , Simulação de Dinâmica Molecular , Mutação/genética , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Termodinâmica
12.
J Mol Biol ; 427(2): 248-58, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25234087

RESUMO

The importance of knots and entanglements in biological systems is increasingly being realized and the number of proteins with topologically complex knotted structures has risen. However, the mechanism as to how these proteins knot and fold efficiently remains unclear. Using a cell-free expression system and pulse-proteolysis experiments, we have investigated the mechanism of knotting and folding for two bacterial trefoil-knotted methyltransferases. This study provides the first experimental evidence for a knotting mechanism. Results on fusions of stable protein domains to N-terminus, C-terminus or both termini of the knotted proteins clearly demonstrate that threading of the nascent chain through a knotting loop occurs via the C-terminus. Our results strongly suggest that this mechanism occurs even when the C-terminus is severely hindered by the addition of a large stable structure, in contrast to some simulations indicating that even the folding pathways of knotted proteins have some plasticity. The same strategy was employed to probe the effects of GroEL-GroES. In this case, results suggest active mechanisms for the molecular chaperonin. We demonstrate that a simple model in which GroEL-GroES sterically confines the unknotted polypeptide chain thereby promoting knotting is unlikely, and we propose two alternatives: (a) the chaperonin facilitates unfolding of kinetically and topologically trapped intermediates or (b) the chaperonin stabilizes interactions that promote knotting. These findings provide mechanistic insights into the folding of knotted proteins both in vitro and in vivo, thus elucidating how they have withstood evolutionary pressures regardless of their complex topologies and intrinsically slow folding rates.


Assuntos
Proteínas de Bactérias/química , Metiltransferases/química , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas de Bactérias/genética , Sistema Livre de Células , Chaperoninas/química , Chaperoninas/genética , Escherichia coli/química , Escherichia coli/genética , Metiltransferases/genética , Modelos Moleculares , Estrutura Molecular , Peptídeos/química , Biossíntese de Proteínas , Conformação Proteica , Estrutura Terciária de Proteína , Proteólise , Proteínas Recombinantes de Fusão/genética
13.
Biomol NMR Assign ; 8(2): 439-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23853076

RESUMO

YibK is a tRNA methyltransferase from Haemophilus influenzae, which forms a stable homodimer in solution and contains a deep trefoil 31 knot encompassing the C-terminal helix that threads through a long loop. It has been a model system for investigating knotted protein folding pathways. Recent data have shown that the polypeptide chain of YibK remains loosely knotted under highly denaturing conditions. Here, we report (1)H, (13)C and (15)N chemical shift assignments for YibK and its variant in the presence of 8 M urea. This work forms the basis for further analysis using NMR techniques such as paramagnetic relaxation enhancement, residual dipolar couplings and spin-relaxation dynamics analysis.


Assuntos
Metiltransferases/química , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica/efeitos dos fármacos , Ureia/farmacologia , Haemophilus influenzae/enzimologia , Marcadores de Spin
14.
J Mol Biol ; 425(22): 4614-28, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23948507

RESUMO

Aggregated α-synuclein is one of the main components of the pathological Lewy bodies associated with Parkinson's disease (PD). Many other proteins, including chaperones such as Hsp90 and Hsp70, have been found co-localized with Lewy bodies and the expression levels of Hsp90 have been found to be increased in brains of PD patients. Although the role of Hsp70 in the aggregation of α-synuclein has been extensively studied, relatively little is known about the effect of Hsp90 on this process. Here, we have investigated if Hsp90 can prevent the aggregation of the A53T pathological mutant of α-synuclein in vitro. A detailed study using many biophysical methods has revealed that Hsp90 prevents α-synuclein from aggregating in an ATP-independent manner and that it forms a strong complex with the transiently populated toxic oligomeric α-synuclein species formed along the aggregation pathway. We have also shown that, upon forming a complex with Hsp90, the oligomers are rendered harmless and nontoxic to cells. Thus, we have clear evidence that Hsp90 is likely to play an important role on these processes in vivo.


Assuntos
Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Multimerização Proteica , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Adenosina Trifosfatases/metabolismo , Linhagem Celular , Humanos , Cinética , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Solubilidade , alfa-Sinucleína/toxicidade
15.
Top Curr Chem ; 328: 155-240, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22955504

RESUMO

Hsp90 is a highly abundant and ubiquitous molecular chaperone which plays an essential role in many cellular processes including cell cycle control, cell survival, hormone and other signalling pathways. It is important for the cell's response to stress and is a key player in maintaining cellular homeostasis. In the last ten years, it has become a major therapeutic target for cancer, and there has also been increasing interest in it as a therapeutic target in neurodegenerative disorders, and in the development of anti-virals and anti-protozoan infections. The focus of this review is the structural and mechanistic studies which have been performed in order to understand how this important chaperone acts on a wide variety of different proteins (its client proteins) and cellular processes. As with many of the other classes of molecular chaperone, Hsp90 has a critical ATPase activity, and ATP binding and hydrolysis known to modulate the conformational dynamics of the protein. It also uses a host of cochaperones which not only regulate the ATPase activity and conformational dynamics but which also mediate interactions with Hsp90 client proteins. The system is also regulated by post-translational modifications including phosphorylation and acetylation. This review discusses all these aspects of Hsp90 structure and function.


Assuntos
Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/fisiologia , Cristalografia por Raios X , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade
16.
Proc Natl Acad Sci U S A ; 107(18): 8189-94, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20393125

RESUMO

Structures that contain a knot formed by the path of the polypeptide backbone represent some of the most complex topologies observed in proteins. How or why these topological knots arise remains unclear. By developing a method to experimentally trap and detect knots in nonnative polypeptide chains, we find that two knotted methyltransferases, YibK and YbeA, can exist in a trefoil-knot conformation even in their chemically unfolded states. The unique denatured-state topology of these molecules explains their ability to efficiently fold to their native knotted structures in vitro and offers insights into the potential role of knots in proteins. Furthermore, the high prevalence of the denatured-state knots identified here suggests that they are either difficult to untie or that threading of any untied molecules is rapid and spontaneous. The occurrence of such knotted topologies in unfolded polypeptide chains raises the possibility that they could play an important, and as yet unexplored, role in folding and misfolding processes in vivo.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Haemophilus influenzae/enzimologia , Metiltransferases/química , Proteínas de Escherichia coli/metabolismo , Metiltransferases/metabolismo , Modelos Moleculares , Desnaturação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
17.
Biomol NMR Assign ; 4(1): 41-3, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20012716

RESUMO

UCH-L1 is a member of the family of ubiquitin C-terminal hydrolases whose primary role is to hydrolyze small C-terminal adducts of ubiquitin to generate free ubiquitin monomers. Expression of UCH-L1 is highly specific to neurons and point mutations in this enzyme are associated with a hereditary form of Parkinson's disease. Herein, we present the NMR backbone assignments of human UCH-L1, thus enabling future solution-state NMR spectroscopic studies on the structure and function of this important protein.


Assuntos
Ubiquitina Tiolesterase/química , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Escherichia coli , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Homologia Estrutural de Proteína , Ubiquitina Tiolesterase/genética
18.
FEBS J ; 276(9): 2625-35, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19476499

RESUMO

Proteins possessing deeply embedded topological knots in their structure add a stimulating new challenge to the already complex protein-folding problem. The most complicated knotted topology observed to date belongs to the human enzyme ubiquitin C-terminal hydrolase UCH-L3, which is an integral part of the ubiquitin-proteasome system. The structure of UCH-L3 contains five distinct crossings of its polypeptide chain, and it adopts a 5(2)-knotted topology, making it a fascinating target for folding studies. Here, we provide the first in depth characterization of the stability and folding of UCH-L3. We show that the protein can unfold and refold reversibly in vitro without the assistance of molecular chaperones, demonstrating that all the information necessary for the protein to find its knotted native structure is encoded in the amino acid sequence, just as with any other globular protein, and that the protein does not enter into any deep kinetic traps. Under equilibrium conditions, the unfolding of UCH-L3 appears to be two-state, however, multiphasic folding and unfolding kinetics are observed and the data are consistent with a folding pathway in which two hyperfluorescent intermediates are formed. In addition, a very slow phase in the folding kinetics is shown to be limited by proline-isomerization events. Overall, the data suggest that a knotted topology, even in its most complex form, does not necessarily limit folding in vitro, however, it does seem to require a complex folding mechanism which includes the formation of several distinct intermediate species.


Assuntos
Cisteína Endopeptidases/química , Dicroísmo Circular , Cisteína Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Cinética , Conformação Proteica , Dobramento de Proteína , Termodinâmica , Ubiquitina Tiolesterase
19.
Proc Natl Acad Sci U S A ; 105(48): 18740-5, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19015517

RESUMO

One of the most striking topological features to be found in a protein is that of a distinct knot formed by the path of the polypeptide backbone. Such knotted structures represent some of the smallest "self-tying" knots observed in Nature. Proteins containing a knot deep within their structure add an extra complication to the already challenging protein-folding problem; it is not obvious how, during the process of folding, a substantial length of polypeptide chain manages to spontaneously thread itself through a loop. Here, we probe the folding mechanism of YibK, a homodimeric alpha/beta-knot protein containing a deep trefoil knot at its carboxy terminus. By analyzing the effect of mutations made in the knotted region of the protein we show that the native structure in this area remains undeveloped until very late in the folding reaction. Single-site destabilizing mutations made in the knot structure significantly affect only the folding kinetics of a late-forming intermediate and the slow dimerization step. Furthermore, we find evidence to suggest that the heterogeneity observed in the denatured state is not caused by isomerization of the single cis proline bond as previously thought, but instead could be a result of the knotting mechanism. These results allow us to propose a folding model for YibK where the threading of the polypeptide chain and the formation of native structure in the knotted region of the protein occur independently as successive events.


Assuntos
Proteínas de Bactérias/química , Conformação Proteica , Dobramento de Proteína , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dimerização , Haemophilus influenzae , Modelos Moleculares , Mutação Puntual , Prolina/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA