Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 5(8): e2226335, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35947380

RESUMO

Importance: Antibody responses elicited by current messenger RNA (mRNA) COVID-19 vaccines decline rapidly and require repeated boosting. Objective: To evaluate the immunogenicity and durability of heterologous and homologous prime-boost regimens involving the adenovirus vector vaccine Ad26.COV2.S and the mRNA vaccine BNT162b2. Design, Setting, and Participants: In this cohort study at a single clinical site in Boston, Massachusetts, 68 individuals who were vaccinated at least 6 months previously with 2 immunizations of BNT162b2 were boosted with either Ad26.COV2.S or BNT162b2. Enrollment of participants occurred from August 12, 2021, to October 25, 2021, and this study involved 4 months of follow-up. Data analysis was performed from November 2021 to February 2022. Exposures: Participants who were previously vaccinated with BNT162b2 received a boost with either Ad26.COV2.S or BNT162b2. Main Outcomes and Measures: Humoral immune responses were assessed by neutralizing, binding, and functional antibody responses for 16 weeks following the boost. CD8+ and CD4+ T-cell responses were evaluated by intracellular cytokine staining assays. Results: Among 68 participants who were originally vaccinated with BNT162b2 and boosted with Ad26.COV2.S (41 participants; median [range] age, 36 [23-84] years) or BNT162b2 (27 participants; median [range] age, 35 [23-76] years), 56 participants (82%) were female, 7 (10%) were Asian, 4 (6%) were Black, 4 (6%) were Hispanic or Latino, 3 (4%) were more than 1 race, and 53 (78%) were White. Both vaccines were found to be associated with increased humoral and cellular immune responses, including against SARS-CoV-2 variants of concern. BNT162b2 boosting was associated with a rapid increase of Omicron neutralizing antibodies that peaked at a median (IQR) titer of 1018 (699-1646) at week 2 and declined by 6.9-fold to a median (IQR) titer of 148 (95-266) by week 16. Ad26.COV2.S boosting was associated with increased Omicron neutralizing antibodies titers that peaked at a median (IQR) of 859 (467-1838) week 4 and declined by 2.1-fold to a median (IQR) of 403 (208-1130) by week 16. Conclusions and Relevance: Heterologous Ad26.COV2.S boosting was associated with durable humoral and cellular immune responses in individuals who originally received the BNT162b2 vaccine. These data suggest potential benefits of heterologous prime-boost vaccine regimens for SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Ad26COVS1 , Adulto , Anticorpos Neutralizantes , Vacina BNT162 , COVID-19/prevenção & controle , Estudos de Coortes , Feminino , Humanos , Masculino , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
2.
Sci Immunol ; 7(77): eabq7647, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35943359

RESUMO

Spike-specific neutralizing antibodies (NAbs) are generally considered key correlates of vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Recently, robust vaccine prevention of severe disease with SARS-CoV-2 variants that largely escape NAb responses has been reported, suggesting a role for other immune parameters for virologic control. However, direct data demonstrating a role of CD8+ T cells in vaccine protection have not yet been reported. In this study, we show that vaccine-elicited CD8+ T cells contribute substantially to virologic control after SARS-CoV-2 challenge in rhesus macaques. We vaccinated 30 macaques with a single immunization of the adenovirus vector-based vaccine Ad26.COV2.S or sham and then challenged them with 5 × 105 median tissue culture infectious dose SARS-CoV-2 B.1.617.2 (Delta) by the intranasal and intratracheal routes. All vaccinated animals were infected by this high-dose challenge but showed rapid virologic control in nasal swabs and bronchoalveolar lavage by day 4 after challenge. However, administration of an anti-CD8α- or anti-CD8ß-depleting monoclonal antibody in vaccinated animals before SARS-CoV-2 challenge resulted in higher levels of peak and day 4 virus in both the upper and lower respiratory tracts. These data demonstrate that CD8+ T cells contribute substantially to vaccine protection against SARS-CoV-2 replication in macaques.


Assuntos
COVID-19 , Vacinas Virais , Animais , Humanos , SARS-CoV-2 , Linfócitos T CD8-Positivos , Macaca mulatta , Ad26COVS1 , COVID-19/prevenção & controle
3.
Sci Transl Med ; 14(665): eabo6160, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35857623

RESUMO

Human monoclonal antibodies (mAbs) that target the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) offer a promising approach for the prevention and treatment of coronavirus disease 2019 (COVID-19). Given suboptimal global vaccination rates, waning immunity in vaccinated individuals, and the emergence of SARS-CoV-2 variants of concern, the use of mAbs for COVID-19 prevention may increase and may need to be administered together with vaccines in certain settings. However, it is unknown whether administration of mAbs will affect the immunogenicity of SARS-CoV-2 vaccines. Using an adenovirus vector-based SARS-CoV-2 vaccine, we show that simultaneous administration of the vaccine with SARS-CoV-2 mAbs does not diminish vaccine-induced humoral or cellular immunity in cynomolgus macaques. These results suggest that SARS-CoV-2 mAbs and viral vector-based SARS-CoV-2 vaccines can be administered together without loss of potency of either product. Additional studies will be required to evaluate coadministration of mAbs with other vaccine platforms.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
4.
Cell ; 185(9): 1549-1555.e11, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35427477

RESUMO

The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. In this study, we show that the mRNA-based BNT162b2 vaccine and the adenovirus-vector-based Ad26.COV2.S vaccine provide robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in cynomolgus macaques. We vaccinated 30 macaques with homologous and heterologous prime-boost regimens with BNT162b2 and Ad26.COV2.S. Following Omicron challenge, vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs. However, 4 vaccinated animals that had moderate Omicron-neutralizing antibody titers and undetectable Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Moreover, virologic control correlated with both antibody and T cell responses. These data suggest that both humoral and cellular immune responses contribute to vaccine protection against a highly mutated SARS-CoV-2 variant.


Assuntos
Ad26COVS1/imunologia , Vacina BNT162/imunologia , COVID-19 , Macaca , SARS-CoV-2 , Ad26COVS1/administração & dosagem , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162/administração & dosagem , COVID-19/imunologia , COVID-19/prevenção & controle , Linfócitos T/imunologia
5.
bioRxiv ; 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35169798

RESUMO

BACKGROUND: The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. Immune correlates of vaccine protection against Omicron are not known. METHODS: 30 cynomolgus macaques were immunized with homologous and heterologous prime-boost regimens with the mRNA-based BNT162b2 vaccine and the adenovirus vector-based Ad26.COV2.S vaccine. Following vaccination, animals were challenged with the SARS-CoV-2 Omicron variant by the intranasal and intratracheal routes. RESULTS: Omicron neutralizing antibodies were observed following the boost immunization and were higher in animals that received BNT162b2, whereas Omicron CD8+ T cell responses were higher in animals that received Ad26.COV2.S. Following Omicron challenge, sham controls showed more prolonged virus in nasal swabs than in bronchoalveolar lavage. Vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs, showing that current vaccines provide substantial protection against Omicron in this model. However, vaccinated animals that had moderate levels of Omicron neutralizing antibodies but negligible Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Virologic control correlated with both antibody and T cell responses. CONCLUSIONS: BNT162b2 and Ad26.COV2.S provided robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in macaques. Protection against this highly mutated SARS-CoV-2 variant correlated with both humoral and cellular immune responses.

6.
Annu Rev Med ; 73: 41-54, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34609905

RESUMO

The worldwide pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the unprecedented pace of development of multiple vaccines. This review evaluates how adenovirus (Ad) vector platforms have been leveraged in response to this pandemic. Ad vectors have been used in the past for vaccines against other viruses, most notably HIV and Ebola, but they never have been produced, distributed, or administered to humans at such a large scale. Several different serotypes of Ads encoding SARS-CoV-2 Spike have been tested and found to be efficacious against COVID-19. As vaccine rollouts continue and the number of people receiving these vaccines increases, we will continue to learn about this vaccine platform for COVID-19 prevention and control.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vetores Genéticos , Humanos , Pandemias , SARS-CoV-2
7.
Sci Transl Med ; 13(618): eabj3789, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34705477

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern have emerged and may pose a threat to both the efficacy of vaccines based on the original WA1/2020 strain and the natural immunity induced by infection with earlier SARS-CoV-2 variants. We investigated how mutations in the spike protein of circulating SARS-CoV-2 variants, which have been shown to partially evade neutralizing antibodies, affect natural and vaccine-induced immunity. We adapted a Syrian hamster model of moderate to severe clinical disease for two variant strains of SARS-CoV-2: B.1.1.7 (alpha variant) and B.1.351 (beta variant). We then assessed the protective efficacy conferred by either natural immunity from WA1/2020 infection or by vaccination with a single dose of the adenovirus serotype 26 vaccine, Ad26.COV2.S. Primary infection with the WA1/2020 strain provided potent protection against weight loss and viral replication in lungs after rechallenge with WA1/2020, B.1.1.7, or B.1.351. Ad26.COV2.S induced cross-reactive binding and neutralizing antibodies that were reduced against the B.1.351 strain compared with WA1/2020 but nevertheless still provided robust protection against B.1.351 challenge, as measured by weight loss and pathology scoring in the lungs. Together, these data support hamsters as a preclinical model to study protection against emerging variants of SARS-CoV-2 conferred by prior infection or vaccination.


Assuntos
COVID-19 , SARS-CoV-2 , Ad26COVS1 , Animais , Vacinas contra COVID-19 , Cricetinae , Humanos , Vacinação
8.
Nature ; 590(7847): 630-634, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276369

RESUMO

Recent studies have reported the protective efficacy of both natural1 and vaccine-induced2-7 immunity against challenge with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in rhesus macaques. However, the importance of humoral and cellular immunity for protection against infection with SARS-CoV-2 remains to be determined. Here we show that the adoptive transfer of purified IgG from convalescent rhesus macaques (Macaca mulatta) protects naive recipient macaques against challenge with SARS-CoV-2 in a dose-dependent fashion. Depletion of CD8+ T cells in convalescent macaques partially abrogated the protective efficacy of natural immunity against rechallenge with SARS-CoV-2, which suggests a role for cellular immunity in the context of waning or subprotective antibody titres. These data demonstrate that relatively low antibody titres are sufficient for protection against SARS-CoV-2 in rhesus macaques, and that cellular immune responses may contribute to protection if antibody responses are suboptimal. We also show that higher antibody titres are required for treatment of SARS-CoV-2 infection in macaques. These findings have implications for the development of SARS-CoV-2 vaccines and immune-based therapeutic agents.


Assuntos
COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/terapia , Modelos Animais de Doenças , SARS-CoV-2/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/virologia , Feminino , Imunização Passiva , Imunoglobulina G/administração & dosagem , Imunoglobulina G/análise , Imunoglobulina G/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Análise de Regressão , Carga Viral/imunologia , Soroterapia para COVID-19
9.
Nat Med ; 26(11): 1694-1700, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32884153

RESUMO

Coronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death1-4. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters5-7 and nonhuman primates8-10 have generally reported mild clinical disease, and preclinical SARS-CoV-2 vaccine studies have demonstrated reduction of viral replication in the upper and lower respiratory tracts in nonhuman primates11-13. Here we show that high-dose intranasal SARS-CoV-2 infection in hamsters results in severe clinical disease, including high levels of virus replication in tissues, extensive pneumonia, weight loss and mortality in a subset of animals. A single immunization with an adenovirus serotype 26 vector-based vaccine expressing a stabilized SARS-CoV-2 spike protein elicited binding and neutralizing antibody responses and protected against SARS-CoV-2-induced weight loss, pneumonia and mortality. These data demonstrate vaccine protection against SARS-CoV-2 clinical disease. This model should prove useful for preclinical studies of SARS-CoV-2 vaccines, therapeutics and pathogenesis.


Assuntos
Adenoviridae/genética , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/uso terapêutico , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Cricetinae , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Humanos , Masculino , Mesocricetus , SARS-CoV-2/genética , Índice de Gravidade de Doença , Vacinas Sintéticas/genética , Vacinas Sintéticas/uso terapêutico , Carga Viral
10.
Nature ; 586(7830): 583-588, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32731257

RESUMO

A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic1-8. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes9,10. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Macaca mulatta , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , COVID-19 , Vacinas contra COVID-19 , Modelos Animais de Doenças , Feminino , Imunidade Celular , Imunidade Humoral , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , SARS-CoV-2 , Vacinação , Carga Viral
11.
Cell Host Microbe ; 26(5): 591-600.e4, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31668877

RESUMO

Maternal infection with Zika virus (ZIKV) can lead to microcephaly and other congenital abnormalities of the fetus. Although ZIKV vaccines that prevent or reduce viremia in non-pregnant mice have been described, a maternal vaccine that provides complete fetal protection would be desirable. Here, we show that adenovirus (Ad) vector-based ZIKV vaccines induce potent neutralizing antibodies that confer robust maternal and fetal protection against ZIKV challenge in pregnant, highly susceptible IFN-αßR-/- mice. Moreover, passive transfer of maternal antibodies from vaccinated dams protected pups against post-natal ZIKV challenge. These data suggest that Ad-based ZIKV vaccines may be able to provide protection in pregnant females against fetal ZIKV transmission in utero as well as in infants against ZIKV infection after birth.


Assuntos
Anticorpos Neutralizantes/sangue , Imunidade Materno-Adquirida/imunologia , Receptor de Interferon alfa e beta/genética , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Vacinação , Células Vero , Infecção por Zika virus/imunologia
12.
Elife ; 72018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30180933

RESUMO

We demonstrate a two-hybrid assay based on antibody micropatterns to study protein-protein interactions at the cell surface of major histocompatibility complex class I (MHC I) proteins. Anti-tag and conformation-specific antibodies are used for individual capture of specific forms of MHC I proteins that allow for location- and conformation-specific analysis by fluorescence microscopy. The assay is used to study the in cis interactions of MHC I proteins at the cell surface under controlled conditions and to define the involved protein conformations. Our results show that homotypic in cis interactions occur exclusively between MHC I free heavy chains, and we identify the dissociation of the light chain from the MHC I protein complex as a condition for MHC I in cis interactions. The functional role of these MHC I protein-protein interactions at the cell surface needs further investigation. We propose future technical developments of our two-hybrid assay for further analysis of MHC I protein-protein interactions.


Assuntos
Anticorpos/metabolismo , Membrana Celular/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Animais , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Peptídeos/metabolismo , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA