Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
EMBO Mol Med ; 15(9): e17376, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37534622

RESUMO

SARS-CoV-2 acute respiratory distress syndrome (ARDS) induces uncontrolled lung inflammation and coagulopathy with high mortality. Anti-viral drugs and monoclonal antibodies reduce early COVID-19 severity, but treatments for late-stage immuno-thrombotic syndromes and long COVID are limited. Serine protease inhibitors (SERPINS) regulate activated proteases. The myxoma virus-derived Serp-1 protein is a secreted immunomodulatory serpin that targets activated thrombotic, thrombolytic, and complement proteases as a self-defense strategy to combat clearance. Serp-1 is effective in multiple animal models of inflammatory lung disease and vasculitis. Here, we describe systemic treatment with purified PEGylated Serp-1 as a therapy for immuno-coagulopathic complications during ARDS. Treatment with PEGSerp-1 in two mouse-adapted SARS-CoV-2 models in C57Bl/6 and BALB/c mice reduced lung and heart inflammation, with improved outcomes. PEGSerp-1 significantly reduced M1 macrophages in the lung and heart by modifying urokinase-type plasminogen activator receptor (uPAR), thrombotic proteases, and complement membrane attack complex (MAC). Sequential changes in gene expression for uPAR and serpins (complement and plasminogen inhibitors) were observed. PEGSerp-1 is a highly effective immune-modulator with therapeutic potential for severe viral ARDS, immuno-coagulopathic responses, and Long COVID.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Serpinas , Camundongos , Animais , Humanos , Serpinas/uso terapêutico , Serpinas/metabolismo , Serpinas/farmacologia , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Peptídeo Hidrolases
2.
Mol Ther Oncolytics ; 29: 4-14, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36969560

RESUMO

Vesiculoviruses are attractive oncolytic virus platforms due to their rapid replication, appreciable transgene capacity, broad tropism, limited preexisting immunity, and tumor selectivity through type I interferon response defects in malignant cells. We developed a synthetic chimeric virus (VMG) expressing the glycoprotein (G) from Morreton virus (MorV) and utilizing the remaining structural genes from vesicular stomatitis virus (VSV). VMG exhibited in vitro efficacy by inducing oncolysis in a broad range of sarcoma subtypes across multiple species. Notably, all cell lines tested showed the ability of VMG to yield productive infection with rapid replication kinetics and induction of apoptosis. Furthermore, pilot safety evaluations of VMG in immunocompetent, non-tumor-bearing mice showed an absence of toxicity with intranasal doses as high as 1e10 50% tissue culture infectious dose (TCID50)/kg. Locoregional administration of VMG in vivo resulted in tumor reduction in an immunodeficient Ewing sarcoma xenograft at doses as low as 2e5 TCID50. In a murine syngeneic fibrosarcoma model, while no tumor inhibition was achieved with VMG, there was a robust induction of CD8+ T cells within the tumor. The studies described herein establish the promising potential for VMG to be used as a novel oncolytic virotherapy platform with anticancer effects in sarcoma.

3.
bioRxiv ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824761

RESUMO

Nucleocytoplasmic transport of proteins using XPO1 (exportin 1) plays a vital role in cell proliferation and survival. Many viruses also exploit this pathway to promote infection and replication. Thus, inhibiting XPO1-mediated nuclear export with selective inhibitors activates multiple antiviral and anti-inflammatory pathways. The XPO1 inhibitor, Selinexor, is an FDA-approved anticancer drug predicted to have antiviral function against many viruses, including SARS-CoV-2. Unexpectedly, we observed that pretreatment of cultured human cells with Selinexor actually enhanced protein expression and replication of coronaviruses, including SARS-CoV-2. Knockdown of cellular XPO1 protein expression significantly enhanced the replication of coronaviruses in human cells. We further demonstrate that Selinexor treatment reduced the formation of unique cytoplasmic antiviral granules that include RNA helicase DHX9 in the virus-infected cells. These results, for the first time, show that the anti-cancer drug Selinexor enhances the replication of coronaviruses in human cells in vitro and thus should be further explored in vivo for the potential impact on the dual use for anticancer and antiviral therapy.

4.
Hepatology ; 77(6): 1943-1957, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36052732

RESUMO

BACKGROUND: Morreton virus (MORV) is an oncolytic Vesiculovirus , genetically distinct from vesicular stomatitis virus (VSV). AIM: To report that MORV induced potent cytopathic effects (CPEs) in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) in vitro models. APPROACH AND RESULTS: In preliminary safety analyses, high intranasal doses (up to 10 10 50% tissue culture infectious dose [TCID 50 ]) of MORV were not associated with significant adverse effects in immune competent, non-tumor-bearing mice. MORV was shown to be efficacious in a Hep3B hepatocellular cancer xenograft model but not in a CCA xenograft HuCCT1 model. In an immune competent, syngeneic murine CCA model, single intratumoral treatments with MORV (1 × 10 7 TCID 50 ) triggered a robust antitumor immune response leading to substantial tumor regression and disease control at a dose 10-fold lower than VSV (1 × 10 8 TCID 50 ). MORV led to increased CD8 + cytotoxic T cells without compensatory increases in tumor-associated macrophages and granulocytic or monocytic myeloid-derived suppressor cells. CONCLUSIONS: Our findings indicate that wild-type MORV is safe and can induce potent tumor regression via immune-mediated and immune-independent mechanisms in HCC and CCA animal models without dose limiting adverse events. These data warrant further development and clinical translation of MORV as an oncolytic virotherapy platform.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Viral Oncolítica , Camundongos , Humanos , Animais , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Vesiculovirus , Modelos Animais de Doenças , Linhagem Celular Tumoral
5.
Dig Dis Sci ; 67(8): 3797-3805, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34773565

RESUMO

BACKGROUND: FGFR2 genomic alterations are observed in 10-20% of cholangiocarcinoma (CCA). Although FGFR2 fusions are an important actionable target, FGFR2 protein expression has not been thoroughly characterized. AIMS: To evaluate FGFR2 protein expression in cholangiocarcinoma harboring FGFR2 genomic alterations. METHODS: FGFR2 protein expression was evaluated in 99 CCA cases with two different antibodies. FGFR2 genomic alterations were confirmed via next-generating sequencing (NGS) or FISH. Primary objective was to determine the specificity and sensitivity of FGFR2 immunohistochemistry staining for detecting FGFR2 genomic alterations. Secondary objectives included overall FGFR2 immunohistochemistry staining in CCA patients, and evaluation of whether FGFR2 expression correlates with clinical outcomes including overall survival (OS), progression-free survival (PFS), and time-to-tumor recurrence (TTR). RESULTS: Immunohistochemistry staining with two antibodies against FGFR2, FPR2-D, and clone 98706 showed high accuracy (78.7% and 91.9%) and specificity (82.9% and 97.7%), and moderate sensitivity (53.9% and 57.1%), respectively, when compared with the standard methods for detecting FGFR2 genomic alterations. In a median follow-up of 72 months, there were no statistically significant differences in OS, PFS, and TTR, for patients with positive or negative FGFR2 staining. CONCLUSION: FGFR2 protein expression by immunohistochemistry has high specificity and therefore could be used to imply the presence of FGFR2 genomic alterations in the context of a positive test. In the case of a negative test, NGS or FISH would be necessary to ascertain cases with FGFR2 genomic alterations.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/genética , Genômica , Humanos , Imuno-Histoquímica , Recidiva Local de Neoplasia/patologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
6.
Cell Host Microbe ; 29(8): 1266-1276.e5, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34192517

RESUMO

Necroptosis mediated by Z-nucleic-acid-binding protein (ZBP)1 (also called DAI or DLM1) contributes to innate host defense against viruses by triggering cell death to eliminate infected cells. During infection, vaccinia virus (VACV) protein E3 prevents death signaling by competing for Z-form RNA through an N-terminal Zα domain. In the absence of this E3 domain, Z-form RNA accumulates during the early phase of VACV infection, triggering ZBP1 to recruit receptor interacting protein kinase (RIPK)3 and execute necroptosis. The C-terminal E3 double-strand RNA-binding domain must be retained to observe accumulation of Z-form RNA and induction of necroptosis. Substitutions of Zα from either ZBP1 or the RNA-editing enzyme double-stranded RNA adenosine deaminase (ADAR)1 yields fully functional E3 capable of suppressing virus-induced necroptosis. Overall, our evidence reveals the importance of Z-form RNA generated during VACV infection as a pathogen-associated molecular pattern (PAMP) unleashing ZBP1/RIPK3/MLKL-dependent necroptosis unless suppressed by viral E3.


Assuntos
Necroptose/fisiologia , Proteínas de Ligação a RNA/metabolismo , Vaccinia virus/fisiologia , Proteínas Virais/metabolismo , Adenosina Desaminase/metabolismo , Morte Celular , Humanos , Necroptose/genética , Proteínas Quinases/metabolismo , RNA de Cadeia Dupla , Proteínas de Ligação a RNA/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Vaccinia virus/genética
7.
Methods Mol Biol ; 2225: 199-216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33108664

RESUMO

Necroptosis has been implicated as a critical cell death pathway in cancers, Alzheimer's and other neurodegenerative diseases, and virus-infected cells. Necroptosis occurs when mixed-lineage kinase domain-like protein (MLKL) punctures the cytoplasmic membrane allowing a rapid influx of water leading to a loss of cellular integrity. As its role in human disease becomes apparent, methods identifying necroptosis will need to be further developed and optimized. Here we describe identification of necroptosis through quantifying cell death with pathway inhibitors and using western blots to identify end points of MLKL activation and protein-protein interactions leading to it.


Assuntos
Fibroblastos/virologia , Immunoblotting/métodos , Necroptose/genética , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Acrilamidas/farmacologia , Animais , Benzotiazóis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Corantes Fluorescentes/química , Regulação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Necroptose/efeitos dos fármacos , Oligopeptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Multimerização Proteica/efeitos dos fármacos , Quinolinas/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Succinimidas/química , Sulfonamidas/farmacologia , Vaccinia virus/crescimento & desenvolvimento
8.
Virology ; 507: 242-256, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28458036

RESUMO

Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Imunização/métodos , Nicotiana/metabolismo , Vaccinia virus/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos , Feminino , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/administração & dosagem , Proteína gp41 do Envelope de HIV/genética , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/genética , Humanos , Imunização Secundária , Camundongos , Camundongos Endogâmicos C57BL , Nicotiana/genética , Nicotiana/virologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vaccinia virus/genética , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
9.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202751

RESUMO

We compared the HIV-1-specific immune responses generated by targeting HIV-1 envelope protein (Env gp140) to either CD40 or LOX-1, two endocytic receptors on dendritic cells (DCs), in rhesus macaques primed with a poxvirus vector (NYVAC-KC) expressing Env gp140. The DC-targeting vaccines, humanized recombinant monoclonal antibodies fused to Env gp140, were administered as a boost with poly-ICLC adjuvant either alone or coadministered with the NYVAC-KC vector. All the DC-targeting vaccine administrations with poly-ICLC increased the low-level serum anti-Env IgG responses elicited by NYVAC-KC priming significantly more (up to a P value of 0.01) than in a group without poly-ICLC. The responses were robust and cross-reactive and contained antibodies specific to multiple epitopes within gp140, including the C1, C2, V1, V2, and V3, C4, C5, and gp41 immunodominant regions. The DC-targeting vaccines also elicited modest serum Env-specific IgA responses. All groups gave serum neutralization activity limited to tier 1 viruses and antibody-dependent cytotoxicity responses (ADCC) after DC-targeting boosts. Furthermore, CD4+ and CD8+ T cell responses specific to multiple Env epitopes were strongly boosted by the DC-targeting vaccines plus poly-ICLC. Together, these results indicate that prime-boost immunization via NYVAC-KC and either anti-CD40.Env gp140/poly-ICLC or anti-LOX-1.Env gp140/poly-ICLC induced balanced antibody and T cell responses against HIV-1 Env. Coadministration of NYVAC-KC with the DC-targeting vaccines increased T cell responses but had minimal effects on antibody responses except for suppressing serum IgA responses. Overall, targeting Env to CD40 gave more robust T cell and serum antibody responses with broader epitope representation and greater durability than with LOX-1.IMPORTANCE An effective vaccine to prevent HIV-1 infection does not yet exist. An approach to elicit strong protective antibody development is to direct virus protein antigens specifically to dendritic cells, which are now known to be the key cell type for controlling immunity. In this study, we have tested in nonhuman primates two prototype vaccines engineered to direct the HIV-1 coat protein Env to dendritic cells. These vaccines bind to either CD40 or LOX-1, two dendritic cell surface receptors with different functions and tissue distributions. We tested the vaccines described above in combination with attenuated virus vectors that express Env. Both vaccines, but especially that delivered via CD40, raised robust immunity against HIV-1 as measured by monitoring potentially protective antibody and T cell responses in the blood. The safety and efficacy of the CD40-targeted vaccine justify further development for future human clinical trials.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/imunologia , Linfócitos T CD8-Positivos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Receptores Depuradores Classe E/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/genética , Animais , Anticorpos Neutralizantes/imunologia , Células CHO , Carboximetilcelulose Sódica/análogos & derivados , Cricetulus , Células Dendríticas/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Macaca mulatta , Masculino , Poli I-C/imunologia , Polilisina/análogos & derivados , Polilisina/imunologia , Vacinação
10.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179536

RESUMO

The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions.IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Vacinas contra a AIDS/genética , Animais , Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , Infecções por HIV/prevenção & controle , Interferon Tipo I/genética , Macaca mulatta , Masculino , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Vacinação , Vaccinia virus/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-27190535

RESUMO

The botanical, Astragalus membranaceus, is a therapeutic in traditional Chinese medicine. Limited literature exists on the overall in vivo effects of A. membranaceus on the human body. This study evaluates the physiological responses to A. membranaceus by measuring leukocyte, platelet, and cytokine responses as well as body temperature and blood pressure in healthy individuals after the in vivo administration of A. membranaceus. A dose-dependent increase in monocytes, neutrophils, and lymphocytes was measured 8-12 hours after administration and an increase in the number of circulating platelets was seen as early as 4 hours. A dynamic change in the levels of circulating cytokines was observed, especially in interferon-γ and tumor necrosis factor-α, IL-13, IL-6, and soluble IL-2R. Subjective symptoms reported by participants were similar to those typically experienced in viral type immune responses and included fatigue, malaise, and headache. Systolic and diastolic blood pressure were reduced within 4 hours after administration, while body temperature mildly increased within 8 hours after administration. In general, all responses returned to baseline values by 24 hours. Collectively, these results support the role of A. membranaceus in priming for a potential immune response as well as its effect on blood flow and wound healing.

12.
J Virol ; 89(20): 10489-99, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246580

RESUMO

UNLABELLED: The vaccinia virus (VACV) E3 protein has been shown to be important for blocking activation of the cellular innate immune system and allowing viral replication to occur unhindered. Mutation or deletion of E3L severely affects viral host range and pathogenesis. While the monkeypox virus (MPXV) genome encodes a homologue of the VACV E3 protein, encoded by the F3L gene, the MPXV gene is predicted to encode a protein with a truncation of 37 N-terminal amino acids. VACV with a genome encoding a similarly truncated E3L protein (VACV-E3LΔ37N) has been shown to be attenuated in mouse models, and infection with VACV-E3LΔ37N has been shown to lead to activation of the host antiviral protein kinase R pathway. In this report, we present data demonstrating that, despite containing a truncated E3 homologue, MPXV phenotypically resembles a wild-type (wt) VACV rather than VACV-E3LΔ37N. Thus, MPXV appears to contain a gene or genes that can suppress the phenotypes associated with an N-terminal truncation in E3. The suppression maps to sequences outside F3L, suggesting that the suppression is extragenic in nature. Thus, MPXV appears to have evolved mechanisms to minimize the effects of partial inactivation of its E3 homologue. IMPORTANCE: Poxviruses have evolved to have many mechanisms to evade host antiviral innate immunity; these mechanisms may allow these viruses to cause disease. Within the family of poxviruses, variola virus (which causes smallpox) is the most pathogenic, while monkeypox virus is intermediate in pathogenicity between vaccinia virus and variola virus. Understanding the mechanisms of monkeypox virus innate immune evasion will help us to understand the evolution of poxvirus innate immune evasion capabilities, providing a better understanding of how poxviruses cause disease.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Interferon Tipo I/imunologia , Monkeypox virus/genética , Proteínas de Ligação a RNA/genética , Vaccinia virus/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Linhagem Celular , Chlorocebus aethiops , Cricetulus , Células Epiteliais/imunologia , Células Epiteliais/virologia , Expressão Gênica , Células HeLa , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/genética , Dados de Sequência Molecular , Monkeypox virus/imunologia , Monkeypox virus/patogenicidade , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/imunologia , Coelhos , Alinhamento de Sequência , Transdução de Sinais , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Células Vero , Proteínas Virais/química , Proteínas Virais/imunologia , Replicação Viral
13.
PLoS One ; 5(9): e12561, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20838436

RESUMO

Many hundreds of botanicals are used in complementary and alternative medicine for therapeutic use as antimicrobials and immune stimulators. While there exists many centuries of anecdotal evidence and few clinical studies on the activity and efficacy of these botanicals, limited scientific evidence exists on the ability of these botanicals to modulate the immune and inflammatory responses. Using botanogenomics (or herbogenomics), this study provides novel insight into inflammatory genes which are induced in peripheral blood mononuclear cells following treatment with immunomodulatory botanical extracts. These results may suggest putative genes involved in the physiological responses thought to occur following administration of these botanical extracts. Using extracts from immunostimulatory herbs (Astragalus membranaceus, Sambucus cerulea, Andrographis paniculata) and an immunosuppressive herb (Urtica dioica), the data presented supports previous cytokine studies on these herbs as well as identifying additional genes which may be involved in immune cell activation and migration and various inflammatory responses, including wound healing, angiogenesis, and blood pressure modulation. Additionally, we report the presence of lipopolysaccharide in medicinally prepared extracts of these herbs which is theorized to be a natural and active component of the immunostimulatory herbal extracts. The data presented provides a more extensive picture on how these herbs may be mediating their biological effects on the immune and inflammatory responses.


Assuntos
Expressão Gênica/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Inflamação/genética , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Extratos Vegetais/farmacologia , Andrographis/química , Astragalus propinquus/química , Células Cultivadas , Humanos , Fatores Imunológicos/imunologia , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Extratos Vegetais/imunologia , Sambucus/química , Urtica dioica/química
14.
J Virol ; 84(6): 2636-47, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20042506

RESUMO

Members of the genus Ranavirus (family Iridoviridae) have been recognized as major viral pathogens of cold-blooded vertebrates. Ranaviruses have been associated with amphibians, fish, and reptiles. At this time, the relationships between ranavirus species are still unclear. Previous studies suggested that ranaviruses from salamanders are more closely related to ranaviruses from fish than they are to ranaviruses from other amphibians, such as frogs. Therefore, to gain a better understanding of the relationships among ranavirus isolates, the genome of epizootic hematopoietic necrosis virus (EHNV), an Australian fish pathogen, was sequenced. Our findings suggest that the ancestral ranavirus was a fish virus and that several recent host shifts have taken place, with subsequent speciation of viruses in their new hosts. The data suggesting several recent host shifts among ranavirus species increase concern that these pathogens of cold-blooded vertebrates may have the capacity to cross numerous poikilothermic species barriers and the potential to cause devastating disease in their new hosts.


Assuntos
Anuros/virologia , Peixes/virologia , Interações Hospedeiro-Patógeno/genética , Ranavirus/genética , Ranavirus/patogenicidade , Animais , Sequência de Bases , Doenças dos Peixes/virologia , Biblioteca Gênica , Genoma Viral , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Ranavirus/classificação , Ranavirus/fisiologia , Alinhamento de Sequência , Tartarugas/virologia , Urodelos/virologia
15.
J Virol ; 83(11): 5718-25, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19321614

RESUMO

The p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) play important roles in the host innate immune response. The protein kinase regulated by RNA (PKR) is implicated in p38 MAPK activation in response to proinflammatory signals in mouse embryonic fibroblasts. To test the role of PKR in the activation of p38 and JNK MAPKs in human cells following viral infection, HeLa cells made stably deficient in PKR by using an RNA interference strategy were compared to cells with sufficient PKR. The phosphorylation of both p38 and JNK in cells with sufficient PKR was activated following either infection with an E3L deletion (DeltaE3L) mutant of vaccinia virus or transfection with double-stranded RNA (dsRNA) in the absence of infection with wild-type vaccinia virus. The depletion of PKR by stable knockdown impaired the phosphorylation of both p38 and JNK induced by either the DeltaE3L mutant virus or dsRNA but not that induced by tumor necrosis factor alpha. The PKR-dependent activation of MAPKs in DeltaE3L mutant-infected cells was abolished by treatment with cytosine beta-d-arabinoside. The complementation of PKR-deficient cells with the human PKR wild-type protein, but not with the PKR catalytic mutant (K296R) protein, restored p38 and JNK phosphorylation following DeltaE3L mutant virus infection. Transient small interfering RNA knockdown established that the p38 and JNK kinase activation following DeltaE3L infection was dependent upon RIG-I-like receptor signal transduction pathway components, including the mitochondrial adapter IPS-1 protein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , eIF-2 Quinase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Âmnio/enzimologia , Linhagem Celular , Ativação Enzimática , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Vaccinia virus/genética , Proteínas Virais/genética , eIF-2 Quinase/genética
16.
Vaccine ; 26(5): 664-76, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18096276

RESUMO

Vaccinia virus (VACV) has been used as the vaccine to protect against smallpox, and recombinant VACVs have been used to develop vaccine candidates against numerous cancers and infectious diseases. Although relatively safe for use in humans, the strains of VACV that were used as smallpox vaccines led to several complications including, progressive infection in immune compromised individuals, eczema vaccination in individuals with a history of atopic dermatitis, and encephalitis and perimyocarditis in apparently healthy individuals. The work described in this paper focuses on attenuated strains of VACV that may have the potential for use as vaccine vectors with reduced pathogenicity. We have generated several VACV mutants in a WR background with specific mutations in the E3L gene that were at least a 1000-fold less pathogenic compared to wtVACV upon intra-nasal infection of mice. Many of these mutant viruses replicated to high titers in the nasal mucosa of mice following intra-nasal administration. Despite replication to high titers in the nose, there was little spread to other organs in infected animals. Intra-nasal vaccination with doses as low as 100-1000 pfu (plaque forming units) of these replicating VACV constructs were sufficient to protect the host from challenge with large doses of wtVACV. Similar constructs in a Copenhagen and a NYCBH background were highly attenuated, yet effective as vaccines in the mouse model. These recombinant VACV constructs may be promising vector candidates for use in vaccination strategies against smallpox and other pathogens.


Assuntos
Proteínas de Ligação a RNA/genética , Vacina Antivariólica/administração & dosagem , Vacina Antivariólica/genética , Varíola/prevenção & controle , Vacinação , Vaccinia virus/genética , Vaccinia virus/imunologia , Proteínas Virais/genética , Administração Intranasal , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Mutação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vaccinia virus/patogenicidade , Virulência
17.
J Biol Chem ; 279(47): 49055-63, 2004 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-15371436

RESUMO

Correct endoproteolytic maturation of gp160 is essential for the infectivity of human immunodeficiency virus type 1. This processing of human immunodeficiency virus-1 envelope protein, gp160, into gp120 and gp41 has been attributed to the activity of the cellular subtilisin-like proprotein convertase furin. The prototypic furin recognition cleavage site is Arg-X-Arg/Lys-Arg. Arg-Arg-Arg-Arg-Arg-Arg or longer iterations of polyarginine have been shown to be competitive inhibitors of substrate cleavage by furin. Here, we tested polyarginine for inhibition of productive human immunodeficiency virus-1-infection in T-cell lines, primary peripheral blood mononuclear cells, and macrophages. We found that polyarginine inhibited significantly human immunodeficiency virus-1 replication at concentrations that were benign to cell cultures ex vivo and mice in vivo. Using a fluorogenic assay, we demonstrated that polyarginine potently inhibited substrate-specific proteolytic cleavage by furin. Moreover, we verified that authentic processing of human immunodeficiency virus-1 gp160 synthesized in human cells from an infectious human immunodeficiency virus-1 (HIV-1) molecular clone was effectively blocked by polyarginine. Taken together, our data support that inhibitors of proteolytic processing of gp160 may be useful for combating human immunodeficiency virus-1 and that polyarginine represents a lead example of such inhibitors.


Assuntos
Furina/metabolismo , Proteína gp160 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Animais , Sítios de Ligação , Western Blotting , Células CHO , Cricetinae , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Hidrólise , Immunoblotting , Células Jurkat , Leucócitos Mononucleares/virologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/metabolismo , Rodaminas/farmacologia , Linfócitos T/virologia , Fatores de Tempo
18.
Proc Natl Acad Sci U S A ; 100(12): 6974-9, 2003 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12777633

RESUMO

The N-terminal domain of the E3L protein of vaccinia virus has sequence similarity to a family of Z-DNA binding proteins of defined three-dimensional structure and it is necessary for pathogenicity in mice. When other Z-DNA-binding domains are substituted for the similar E3L domain, the virus retains its lethality after intracranial inoculation. Mutations decreasing Z-DNA binding in the chimera correlate with decreases in viral pathogenicity, as do analogous mutations in wild-type E3L. A chimeric virus incorporating a related protein that does not bind Z-DNA is not pathogenic, but a mutation that creates Z-DNA binding makes a lethal virus. The ability to bind the Z conformation is thus essential to E3L activity. This finding may allow the design of a class of antiviral agents, including agents against variola (smallpox), which has an almost identical E3L.


Assuntos
DNA Viral/química , DNA Viral/metabolismo , Vaccinia virus/metabolismo , Vaccinia virus/patogenicidade , Adenosina Desaminase/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Sequência de Aminoácidos , Animais , Quimera/genética , DNA Viral/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos , Vaccinia virus/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência
19.
J Virol ; 76(18): 9207-17, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12186904

RESUMO

Hepatitis C virus (HCV) sets up a persistent infection in patients that likely involves a complex virus-host interaction. We previously found that the HCV nonstructural 5A (NS5A) protein interacts with growth factor receptor-binding protein 2 (Grb2) adaptor protein and inhibits the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by epidermal growth factor (EGF). In the present study, we extended this analysis and investigated the specificity of the Grb2-NS5A interaction and whether the subversion of mitogenic signaling involves additional pathways. NS5A containing mutations within the C-terminal proline-rich motif neither bound Grb2 nor inhibited ERK1/2 activation by EGF, demonstrating that NS5A-Grb2 binding and downstream effects were due to direct interactions. Interestingly, NS5A could also form a complex with the Grb2-associated binder 1 (Gab1) protein in an EGF treatment-dependent manner. However, the NS5A-Gab1 association, which appeared indirect, was not mediated by direct NS5A-Grb2 interaction but was likely dependent on direct NS5A interaction with the p85 subunit of phosphatidylinositol 3-kinase (PI3K). The in vivo association of NS5A with p85 PI3K required the N-terminal, but not the C-terminal, region of NS5A. The downstream effects of the NS5A-p85 PI3K interaction included increased tyrosine phosphorylation of p85 PI3K in response to EGF. Consistent with this observation and the antiapoptotic properties of NS5A, we also detected enhanced tyrosine phosphorylation of the downstream AKT protein kinase and increased serine phosphorylation of BAD, a proapoptotic factor and an AKT substrate, in the presence of NS5A. These results collectively suggest a model in which NS5A interacts with Grb2 to inhibit mitogenic signaling while simultaneously promoting the PI3K-AKT cell survival pathway by interaction with p85 PI3K, which may represent a crucial step in HCV persistence and pathogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Hepacivirus/patogenicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Apoptose , Ativação Enzimática , Proteína Adaptadora GRB2 , Regulação da Expressão Gênica , Células HeLa , Hepacivirus/fisiologia , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA