Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Transl Med ; 20(1): 375, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982453

RESUMO

BACKGROUND: Several new generation CDK4/6 inhibitors have been developed and approved for breast cancer therapy in combination with endocrine therapeutics. Application of these inhibitors either alone or in combination in other solid tumors has been proposed, but no imaging biomarkers of response have been reported in non-breast cancer animal models. The purpose of this study was to evaluate 3'-[18F]fluoro-3'-deoxythymidine ([18F]FLT) Positron Emission Tomography (PET) as in vivo biomarker of response to palbociclib in a non-breast cancer model. METHODS: Twenty-four NSG mice bearing patient derived xenografts (PDX) of a well-characterized bladder tumor were randomized into 4 treatment groups: vehicle (n = 6); palbociclib (n = 6); temozolomide (n = 6); and palbociclib plus temozolomide (n = 6) and treated with two cycles of therapy or vehicle. Tumor uptake of [18F]FLT was determined by micro-PET/CT at baseline, 3 days, and 9 days post initiation of therapy. Following the second cycle of therapy, the mice were maintained until their tumors reached a size requiring humane termination. RESULTS: [18F]FLT uptake decreased significantly in the palbociclib and combination arms (p = 0.0423 and 0.0106 respectively at day 3 and 0.0012 and 0.0031 at day 9) with stable tumor volume. In the temozolomide arm [18F]FLT uptake increased with day 9 uptake significantly different than baseline (p = 0.0418) and progressive tumor growth was observed during the treatment phase. All groups exhibited progressive disease after day 22, 10 days following cessation of therapy. CONCLUSION: Significant decreases in [18F]FLT uptake as early as three days post initiation of therapy with palbociclib, alone or in combination with temozolomide, in this bladder cancer model correlates with an absence of tumor growth during therapy that persists until day 18 for the palbociclib group and day 22 for the combination group (6 days and 10 days) following cessation of therapy. These results support early modulation of [18F]FLT as an in vivo biomarker predictive of palbociclib therapy response in a non-breast cancer model.


Assuntos
Didesoxinucleosídeos , Neoplasias da Bexiga Urinária , Animais , Biomarcadores , Linhagem Celular Tumoral , Didesoxinucleosídeos/metabolismo , Humanos , Camundongos , Piperazinas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Piridinas , Temozolomida/uso terapêutico , Timidina , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/tratamento farmacológico
3.
Tomography ; 7(1): 1-9, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33681459

RESUMO

The small animal imaging Digital Imaging and Communications in Medicine (DICOM) acquisition context structured report (SR) was developed to incorporate pre-clinical data in an established DICOM format for rapid queries and comparison of clinical and non-clinical datasets. Established terminologies (i.e., anesthesia, mouse model nomenclature, veterinary definitions, NCI Metathesaurus) were utilized to assist in defining terms implemented in pre-clinical imaging and new codes were added to integrate the specific small animal procedures and handling processes, such as housing, biosafety level, and pre-imaging rodent preparation. In addition to the standard DICOM fields, the small animal SR includes fields specific to small animal imaging such as tumor graft (i.e., melanoma), tissue of origin, mouse strain, and exogenous material, including the date and site of injection. Additionally, the mapping and harmonization developed by the Mouse-Human Anatomy Project were implemented to assist co-clinical research by providing cross-reference human-to-mouse anatomies. Furthermore, since small animal imaging performs multi-mouse imaging for high throughput, and queries for co-clinical research requires a one-to-one relation, an imaging splitting routine was developed, new Unique Identifiers (UID's) were created, and the original patient name and ID were saved for reference to the original dataset. We report the implementation of the small animal SR using MRI datasets (as an example) of patient-derived xenograft mouse models and uploaded to The Cancer Imaging Archive (TCIA) for public dissemination, and also implemented this on PET/CT datasets. The small animal SR enhancement provides researchers the ability to query any DICOM modality pre-clinical and clinical datasets using standard vocabularies and enhances co-clinical studies.


Assuntos
Sistemas de Informação em Radiologia , Animais , Estudos de Coortes , Imageamento por Ressonância Magnética , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
4.
J Natl Cancer Inst ; 113(1): 27-37, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32339229

RESUMO

BACKGROUND: Tumor molecular profiling from patients experiencing exceptional responses to systemic therapy may provide insights into cancer biology and improve treatment tailoring. This pilot study evaluates the feasibility of identifying exceptional responders retrospectively, obtaining pre-exceptional response treatment tumor tissues, and analyzing them with state-of-the-art molecular analysis tools to identify potential molecular explanations for responses. METHODS: Exceptional response was defined as partial (PR) or complete (CR) response to a systemic treatment with population PR or CR rate less than 10% or an unusually long response (eg, duration >3 times published median). Cases proposed by patients' clinicians were reviewed by clinical and translational experts. Tumor and normal tissue (if possible) were profiled with whole exome sequencing and, if possible, targeted deep sequencing, RNA sequencing, methylation arrays, and immunohistochemistry. Potential germline mutations were tracked for relevance to disease. RESULTS: Cases reflected a variety of tumors and standard and investigational treatments. Of 520 cases, 476 (91.5%) were accepted for further review, and 222 of 476 (46.6%) proposed cases met requirements as exceptional responders. Clinical data were obtained from 168 of 222 cases (75.7%). Tumor was provided from 130 of 168 cases (77.4%). Of 117 of the 130 (90.0%) cases with sufficient nucleic acids, 109 (93.2%) were successfully analyzed; 6 patients had potentially actionable germline mutations. CONCLUSION: Exceptional responses occur with standard and investigational treatment. Retrospective identification of exceptional responders, accessioning, and sequencing of pretreatment archived tissue is feasible. Data from molecular analyses of tumors, particularly when combining results from patients who received similar treatments, may elucidate molecular bases for exceptional responses.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/genética , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , National Cancer Institute (U.S.) , Neoplasias/epidemiologia , Neoplasias/patologia , Projetos Piloto , Medicina de Precisão , Estudos Retrospectivos , Análise de Sequência de RNA , Estados Unidos/epidemiologia , Sequenciamento do Exoma
5.
Cancer Cell ; 39(1): 38-53.e7, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33217343

RESUMO

A small fraction of cancer patients with advanced disease survive significantly longer than patients with clinically comparable tumors. Molecular mechanisms for exceptional responses to therapy have been identified by genomic analysis of tumor biopsies from individual patients. Here, we analyzed tumor biopsies from an unbiased cohort of 111 exceptional responder patients using multiple platforms to profile genetic and epigenetic aberrations as well as the tumor microenvironment. Integrative analysis uncovered plausible mechanisms for the therapeutic response in nearly a quarter of the patients. The mechanisms were assigned to four broad categories-DNA damage response, intracellular signaling, immune engagement, and genetic alterations characteristic of favorable prognosis-with many tumors falling into multiple categories. These analyses revealed synthetic lethal relationships that may be exploited therapeutically and rare genetic lesions that favor therapeutic success, while also providing a wealth of testable hypotheses regarding oncogenic mechanisms that may influence the response to cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Redes Reguladoras de Genes , Variação Genética , Genômica/métodos , Neoplasias/tratamento farmacológico , Biópsia , Epigênese Genética , Feminino , Humanos , Masculino , Neoplasias/genética , Neoplasias/patologia , Prognóstico , Análise de Sobrevida , Resultado do Tratamento , Microambiente Tumoral
6.
Neuro Oncol ; 22(9): 1262-1275, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32516388

RESUMO

Despite the widespread clinical use of dynamic susceptibility contrast (DSC) MRI, DSC-MRI methodology has not been standardized, hindering its utilization for response assessment in multicenter trials. Recently, the DSC-MRI Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition issued an updated consensus DSC-MRI protocol compatible with the standardized brain tumor imaging protocol (BTIP) for high-grade gliomas that is increasingly used in the clinical setting and is the default MRI protocol for the National Clinical Trials Network. After reviewing the basis for controversy over DSC-MRI protocols, this paper provides evidence-based best practices for clinical DSC-MRI as determined by the Committee, including pulse sequence (gradient echo vs spin echo), BTIP-compliant contrast agent dosing (preload and bolus), flip angle (FA), echo time (TE), and post-processing leakage correction. In summary, full-dose preload, full-dose bolus dosing using intermediate (60°) FA and field strength-dependent TE (40-50 ms at 1.5 T, 20-35 ms at 3 T) provides overall best accuracy and precision for cerebral blood volume estimates. When single-dose contrast agent usage is desired, no-preload, full-dose bolus dosing using low FA (30°) and field strength-dependent TE provides excellent performance, with reduced contrast agent usage and elimination of potential systematic errors introduced by variations in preload dose and incubation time.


Assuntos
Neoplasias Encefálicas , Glioma , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Consenso , Meios de Contraste , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Humanos , Imageamento por Ressonância Magnética
7.
AJR Am J Roentgenol ; 214(1): 105-113, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31613660

RESUMO

OBJECTIVE. The objective of our study was to evaluate the utility of ferumoxytol-enhanced MR lymphography (MRL) in detection of metastatic lymph nodes (LNs) in patients with prostate, bladder, and kidney cancer. SUBJECTS AND METHODS. This phase 2 single-institution study enrolled patients with confirmed prostate (arm 1), bladder (arm 2), and kidney (arm 3) cancer and evidence of suspected LN involvement. Participants underwent ferumoxytol-enhanced MRL 24 and 48 hours after IV injection of 7.5 mg Fe/kg of ferumoxytol. A retrospective quantitative analysis was performed to determine the optimal timing for ferumoxytol-enhanced MRL using percentage change in normalized signal intensity (SI) from baseline to 24 and 48 hours after injection, which were estimated using the linear mixed-effects model in which time (24 vs 48 hours), diseases status, and time and disease status interaction were the fixed-effects independent variables. Differences in normalized SI values between subgroups of lesions were estimated by forming fixed-effects contrasts and tested by the Wald test. RESULTS. Thirty-nine patients (n = 30, arm 1; n = 6, arm 2; n = 3, arm 3) (median age, 65 years) with 145 LNs (metastatic, n = 100; benign, n = 45) were included. LN-based sensitivity, specificity, positive predictive value, and negative predictive value of ferumoxytol-enhanced MRL was 98.0%, 64.4%, 86.0%, and 93.5%, respectively. Sensitivity and specificity of ferumoxytol-enhanced MRL did not vary by LN size. Metastatic LNs showed a significantly higher percentage decrease of normalized SI on MRL at 24 hours after ferumoxytol injection than at 48 hours after ferumoxytol injection (p = 0.023), whereas the normalized SI values for nonmetastatic LNs were similar at both imaging time points (p = 0.260). CONCLUSION. Ferumoxytol-enhanced MRL shows high sensitivity in the detection of metastatic LNs in genitourinary cancers independent of LN size. The SI difference between benign and malignant LNs on ferumoxytol-enhanced MRL appears similar 24 and 48 hours after ferumoxytol injection, suggesting that imaging can be performed safely within 1 or 2 days of injection. Although ferumoxytol-enhanced MRL can be useful in settings without an available targeted PET agent, issues of iron overload and repeatability of ferumoxytol-enhanced MRL remain concerns for this method.


Assuntos
Óxido Ferroso-Férrico , Neoplasias Renais/patologia , Metástase Linfática/diagnóstico por imagem , Linfografia/métodos , Imageamento por Ressonância Magnética , Neoplasias da Próstata/patologia , Neoplasias da Bexiga Urinária/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos
8.
JCO Clin Cancer Inform ; 3: 1-11, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31834820

RESUMO

PURPOSE: Data sharing creates potential cost savings, supports data aggregation, and facilitates reproducibility to ensure quality research; however, data from heterogeneous systems require retrospective harmonization. This is a major hurdle for researchers who seek to leverage existing data. Efforts focused on strategies for data interoperability largely center around the use of standards but ignore the problems of competing standards and the value of existing data. Interoperability remains reliant on retrospective harmonization. Approaches to reduce this burden are needed. METHODS: The Cancer Imaging Archive (TCIA) is an example of an imaging repository that accepts data from a diversity of sources. It contains medical images from investigators worldwide and substantial nonimage data. Digital Imaging and Communications in Medicine (DICOM) standards enable querying across images, but TCIA does not enforce other standards for describing nonimage supporting data, such as treatment details and patient outcomes. In this study, we used 9 TCIA lung and brain nonimage files containing 659 fields to explore retrospective harmonization for cross-study query and aggregation. It took 329.5 hours, or 2.3 months, extended over 6 months to identify 41 overlapping fields in 3 or more files and transform 31 of them. We used the Genomic Data Commons (GDC) data elements as the target standards for harmonization. RESULTS: We characterized the issues and have developed recommendations for reducing the burden of retrospective harmonization. Once we harmonized the data, we also developed a Web tool to easily explore harmonized collections. CONCLUSION: While prospective use of standards can support interoperability, there are issues that complicate this goal. Our work recognizes and reveals retrospective harmonization issues when trying to reuse existing data and recommends national infrastructure to address these issues.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Curadoria de Dados/normas , Interoperabilidade da Informação em Saúde/normas , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico , Curadoria de Dados/métodos , Bases de Dados Factuais , Guias como Assunto , Humanos , Neoplasias Pulmonares/diagnóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos
9.
J Transl Med ; 17(1): 425, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31878948

RESUMO

BACKGROUND: Spontaneously metastatic xenograft models of cancer are infrequent and the few that exist are resource intensive. In xenografts, caliper measurements can be used to determine primary tumor burden and response to therapy but in metastatic disease models determination of the presence of metastatic disease, metastatic burden, and response to therapy are difficult, often requiring serial necropsy. In this study we characterized the development of visceral metastases in a patient derived xenograft model (PDXM) using in vivo imaging. RESULTS: We identified and characterized the previously unreported development of spontaneous liver and bone metastasis in a known patient derived xenograft, bladder xenograft BL0293F, developed by Jackson Laboratories and the University of California at Davis and available from the National Cancer Institute Patient-Derived Models Repository [1]. Among FDG-PET/CT, contrast-enhanced MRI and non-contrast MRI, non-contrast T2w MRI was the most effective and efficient imaging technique. On non-contrast T2 weighted MRI, hepatic metastases were observed in over 70% of animals at 52 days post tumor implantation without resection of the xenograft and in 100% of animals at day 52 following resection of the xenograft. In a group of animals receiving one cycle of effective chemotherapy, no animals demonstrated metastasis by imaging, confirming the utility of this model for therapy evaluation. There was good agreement between pathologic grade and extent of involvement observed on MRI T2w imaging. CONCLUSION: PDX BL0293F is a reliable visceral organ (liver) metastatic model with high penetrance in both non-aggravated and post excisional situations, providing a reliable window for therapy intervention prior to required excision of the xenograft. The imaging characteristics of this model are highly favorable for non-clinical research studies of metastatic disease when used in conjunction with non-contrast T2 weighted MRI.


Assuntos
Imageamento Tridimensional , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/patologia , Animais , Feminino , Humanos , Neoplasias Hepáticas/secundário , Imageamento por Ressonância Magnética , Camundongos Endogâmicos NOD , Metástase Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Nucl Med ; 60(4): 492-496, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30389817

RESUMO

In preclinical studies, 5-fluoro-2'-deoxycytidine (FdCyd), an inhibitor of DNA methyltransferase and DNA hypermethylation, has shown treatment efficacy against multiple malignancies by suppressing epigenetic hypermethylation in tumor cells. Several ongoing clinical trials are using FdCyd, and although some patients may respond to this drug, in most patients it is ineffective. Thus, establishing a noninvasive imaging modality to evaluate the distribution of the drug may provide insight into the variable responses. A novel experimental radiopharmaceutical, 18F-labeled FdCyd, was developed as a companion imaging agent to the nonradioactive form of the drug, FdCyd. We present the first-in-humans radiation dosimetry results and biodistribution of 18F-FdCyd, administered along with tetrahydrouridine, an inhibitor of cytidine/deoxycytidine deaminase, in patients with a variety of solid tumors undergoing FdCyd therapy. Methods: This phase 0 imaging trial examined the 18F-FdCyd biodistribution and radiation dosimetry in 5 human subjects enrolled in companion therapy trials. In each subject, 4 sequential PET scans were acquired to estimate whole-body and individual organ effective dose, using OLINDA/EXM, version 1.0. Tumor-to-background ratios were also calculated for the tumor sites visualized on PET/CT imaging. Results: The average whole-body effective dose for the experimental radiopharmaceutical 18F-FdCyd administered in conjunction with tetrahydrouridine was 2.12E-02 ± 4.15E-03 mSv/MBq. This is similar to the radiation dose estimates for 18F-FDG PET. The critical organ, with the highest absorbed radiation dose, was the urinary bladder wall at 7.96E-02 mSv/MBq. Other organ doses of note were the liver (6.02E-02mSv/MBq), kidneys (5.26E-02 mSv/MBq), and gallbladder (4.05E-02 mSv/MBq). Tumor target-to-background ratios ranged from 2.4 to 1.4, which potentially enable tumor visualization in static PET images. Conclusion: This phase 0 imaging clinical trial provides evidence that 18F-FdCyd administered in conjunction with tetrahydrouridine yields acceptable individual organ and whole-body effective doses, as well as modest tumor-to-background ratios that potentially enable tumor visualization. Dose estimates for 18F-FdCyd are comparable to those for other PET radiopharmaceuticals, such as 18F-FDG. Further studies with larger study populations are warranted to assess 18F-FdCyd imaging as a predictor of FdCyd treatment effectiveness.


Assuntos
Desoxicitidina/análogos & derivados , Radioisótopos de Flúor , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Tetra-Hidrouridina/administração & dosagem , Adulto , Idoso , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacocinética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radiometria , Distribuição Tecidual
12.
Int J Radiat Oncol Biol Phys ; 101(2): 292-298, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726358

RESUMO

Radiation oncology is 1 of the most structured disciplines in medicine. It is of a highly technical nature with reliance on robotic systems to deliver intervention, engagement of diverse expertise, and early adoption of digital approaches to optimize and execute the application of this highly effective cancer treatment. As a localized intervention, the dependence on sensitive, specific, and accurate imaging to define the extent of disease, its heterogeneity, and adjacency to normal tissues directly affects the therapeutic ratio. Image-based in vivo temporal monitoring of the response to treatment enables adaptation and further affects the therapeutic ratio. Thus, more precise intervention will enable fractionation schedules that better interoperate with advances such as immunotherapy. In the data set-rich era that promises precision and personalized medicine, the radiation oncology field will integrate these new data into highly protocoled pathways of care that begin with multimodality prediction and enable patient-specific adaptation of therapy based on quantitative measures of the individual's dose-volume temporal trajectory and midtherapy predictions of response. In addition to advancements in computed tomography imaging, emerging technologies, such as ultra-high-field magnetic resonance and molecular imaging will bring new information to the design of treatments. Next-generation image guided radiation therapy systems will inject high specificity and sensitivity data and stimulate adaptive replanning. In addition, a myriad of pre- and peritherapeutic markers derived from advances in molecular pathology (eg, tumor genomics), automated and comprehensive imaging analytics (eg, radiomics, tumor microenvironment), and many other emerging biomarkers (eg, circulating tumor cell assays) will need to be integrated to maximize the benefit of radiation therapy for an individual patient. We present a perspective on the promise and challenges of fully exploiting imaging data in the pursuit of personalized radiation therapy, drawing from the presentations and broader discussions at the 2016 American Society of Therapeutic Radiation Oncology-National Cancer Institute workshop on Precision Medicine in Radiation Oncology (Bethesda, MD).


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Medicina de Precisão/métodos , Radioterapia (Especialidade)/métodos , Radioterapia Guiada por Imagem/métodos , Congressos como Assunto , Humanos , Medicina de Precisão/tendências , Radioterapia (Especialidade)/tendências , Radioterapia Guiada por Imagem/tendências
13.
J Nucl Med ; 59(11): 1665-1671, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29602821

RESUMO

The purpose of this study was to compare the diagnostic performance of 18F-DCFBC PET/CT, a first-generation 18F-labeled prostate-specific membrane antigen (PSMA)-targeted agent, and 18F-NaF PET/CT, a sensitive marker of osteoblastic activity, in a prospective cohort of patients with metastatic prostate cancer. Methods: Twenty-eight prostate cancer patients with metastatic disease on conventional imaging prospectively received up to 4 PET/CT scans. All patients completed baseline 18F-DCFBC PET/CT and 18F-NaF PET/CT scans, and 23 patients completed follow-up imaging, with a median follow-up interval of 5.7 mo (range, 4.2-12.6 mo). Lesion detection was compared across the 2 PET/CT agents at each time point. Detection and SUV characteristics of each PET/CT agent were compared with serum prostate-specific antigen (PSA) levels and treatment status at the time of baseline imaging using nonparametric statistical testing (Spearman correlation, Wilcoxon rank). Results: Twenty-six patients had metastatic disease detected on 18F-NaF or 18F-DCFBC at baseline, and 2 patients were negative on both scans. Three patients demonstrated soft tissue-only disease. Of 241 lesions detected at baseline, 56 were soft-tissue lesions identified by 18F-DCFBC only and 185 bone lesions detected on 18F-NaF or 18F-DCFBC. 18F-NaF detected significantly more bone lesions than 18F-DCFBC (P < 0.001). Correlation of PSA with patient-level SUV metrics was strong in 18F-DCFBC (ρ > 0.5, P < 0.01) and poor in 18F-NaF (ρ < 0.3, P > 0.1). When PSA levels were combined with treatment status, patients with below-median levels of PSA (<2 ng/mL) on androgen deprivation therapy (n = 11) demonstrated more lesions on 18F-NaF than 18F-DCFBC (P = 0.02). In PSA greater than 2 ng/mL, patients on androgen deprivation therapy (n = 8) showed equal to or more lesions on 18F-DCFBC than on 18F-NaF. Conclusion: The utility of PSMA-targeting imaging in metastatic prostate cancer appears to depend on patient disease course and treatment status. Compared with 18F-NaF PET/CT, 18F-DCFBC PET/CT detected significantly fewer bone lesions in the setting of early or metastatic castrate-sensitive disease on treatment. However, in advanced metastatic castrate-resistant prostate cancer, 18F-DCFBC PET/CT shows good concordance with NaF PET/CT.


Assuntos
Antígenos de Superfície/metabolismo , Cisteína/análogos & derivados , Radioisótopos de Flúor , Glutamato Carboxipeptidase II/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Tecidos Moles/diagnóstico por imagem , Neoplasias de Tecidos Moles/metabolismo , Neoplasias de Tecidos Moles/secundário
14.
J Nucl Med ; 59(3): 410-417, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28818991

RESUMO

A workshop at the National Cancer Institute on May 2, 2016, considered the current state of imaging in assessment of immunotherapy. Immunotherapy has shown some remarkable and prolonged responses in the treatment of tumors. However, responses are variable and frequently delayed, complicating the evaluation of new immunotherapy agents and customizing treatment for individual patients. Early anatomic imaging may show that a tumor has increased in size, but this could represent pseudoprogression. On the basis of imaging, clinicians must decide if they should stop, pause, or continue treatment. Other imaging technologies and approaches are being developed to improve the measurement of response in patients receiving immunotherapy. Imaging methods that are being evaluated include radiomic methods using CT, MRI, and 18F-FDG PET, as well as new radiolabeled small molecules, antibodies, and antibody fragments to image the tumor microenvironment, immune status, and changes over the course of therapy. Current studies of immunotherapy can take advantage of these available imaging options to explore and validate their use. Collection of CT, PET, and MR images along with outcomes from trials is critical to develop improved methods of assessment.


Assuntos
Diagnóstico por Imagem , Imunoterapia , Relatório de Pesquisa , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/imunologia , Neoplasias/terapia
15.
Eur J Nucl Med Mol Imaging ; 45(1): 4-11, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28894899

RESUMO

PURPOSE: The purpose of our study was to assess 18F-DCFBC PET/CT, a PSMA targeted PET agent, for lesion detection and clinical management of biochemical relapse in prostate cancer patients after primary treatment. METHODS: This is a prospective IRB-approved study of 68 patients with documented biochemical recurrence after primary local therapy consisting of radical prostatectomy (n = 50), post radiation therapy (n = 9) or both (n = 9), with negative conventional imaging. All 68 patients underwent whole-body 18F-DCFBC PET/CT, and 62 also underwent mpMRI within one month. Lesion detection with 18F-DCFBC was correlated with mpMRI findings and pre-scan PSA levels. The impact of 18F-DCFBC PET/CT on clinical management and treatment decisions was established after 6 months' patient clinical follow-up. RESULTS: Forty-one patients (60.3%) showed at least one positive 18F-DCFBC lesion, for a total of 79 lesions, 30 in the prostate bed, 39 in lymph nodes, and ten in distant sites. Tumor recurrence was confirmed by either biopsy (13/41 pts), serial CT/MRI (8/41) or clinical follow-up (15/41); there was no confirmation in five patients, who continue to be observed. The 18F-DCFBC and mpMRI findings were concordant in 39 lesions (49.4%), and discordant in 40 lesions (50.6%); the majority (n = 32/40) of the latter occurring because the recurrence was located outside the mpMRI field of view. 18F-DCFBC PET positivity rates correlated with PSA values and 15%, 46%, 83%, and 77% were seen in patients with PSA values <0.5, 0.5 to <1.0, 1.0 to <2.0, and ≥2.0 ng/mL, respectively. The optimal cut-off PSA value to predict a positive 18F-DCFBC scan was 0.78 ng/mL (AUC = 0.764). A change in clinical management occurred in 51.2% (21/41) of patients with a positive 18F-DCFBC result, generally characterized by starting a new treatment in 19 patients or changing the treatment plan in two patients. CONCLUSIONS: 18F-DCFBC detects recurrences in 60.3% of a population of patients with biochemical recurrence, but results are dependent on PSA levels. Above a threshold PSA value of 0.78 ng/mL, 18F-DCFBC was able to identify recurrence with high reliability. Positive 18F-DCFBC PET imaging led clinicians to change treatment strategy in 51.2% of patients.


Assuntos
Antígenos de Superfície/sangue , Cisteína/análogos & derivados , Glutamato Carboxipeptidase II/sangue , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/sangue , Sensibilidade e Especificidade
16.
Am J Nucl Med Mol Imaging ; 7(4): 195-203, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28913158

RESUMO

89Zr-panitumumab is a novel immuno-PET radiotracer. A fully humanized IgG2 antibody, panitumumab binds with high affinity to the extracellular ligand binding domain of EGFR. Immuno-PET with radiolabeled panitumumab is a non-invasive method that could characterize EGFR expression in tumors and metastatic lesions. It might also assist in selecting patients likely to benefit from targeted therapy as well as monitor response and drug biodistribution for dosing guidance. Our objective was to calculate the maximum dosing for effective imaging with minimal radiation exposure in a small subset. Three patients with metastatic colon cancer were injected with approximately 1 mCi (37 MBq) of 89Zr-panitumumab IV. Whole body static images were then obtained at 2-6 hours, 1-3 days and 5-7 days post injection. Whole organ contours were applied to the liver, kidneys, spleen, stomach, lungs, bone, gut, heart, bladder and psoas muscle. From these contours, time activity curves were derived and used to calculate mean resident times which were used as input into OLINDA 1.1 software for dosimetry estimates. The whole body effective dose was estimated between 0.264 mSv/MBq (0.97 rem/mCi) and 0.330 mSv/MBq (1.22 rem/mCi). The organ which had the highest dose was the liver which OLINDA estimated between 1.9 mGy/MBq (7.2 rad/mCi) and 2.5 mGy/MBq (9 rad/mCi). The effective dose is within range of extrapolated estimates from mice studies. 89Zr-panitumumab appears safe and dosimetry estimates are reasonable for clinical imaging.

17.
Clin Nucl Med ; 42(10): 735-740, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28806263

RESUMO

PURPOSE: To assess the ability of (N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-F-fluorobenzyl-L-cysteine) (F-DCFBC), a prostate-specific membrane antigen-targeted PET agent, to detect localized prostate cancer lesions in correlation with multiparametric MRI (mpMRI) and histopathology. METHODS: This Health Insurance Portability and Accountability Act of 1996-compliant, prospective, institutional review board-approved study included 13 evaluable patients with localized prostate cancer (median age, 62.8 years [range, 51-74 years]; median prostate-specific antigen, 37.5 ng/dL [range, 3.26-216 ng/dL]). Patients underwent mpMRI and F-DCFBC PET/CT within a 3 months' window. Lesions seen on mpMRI were biopsied under transrectal ultrasound/MRI fusion-guided biopsy, or a radical prostatectomy was performed. F-DCFBC PET/CT and mpMRI were evaluated blinded and separately for tumor detection on a lesion basis. For PET image analysis, MRI and F-DCFBC PET images were fused by using software registration; imaging findings were correlated with histology, and uptake of F-DCFBC in tumors was compared with uptake in benign prostatic hyperplasia nodules and normal peripheral zone tissue using the 80% threshold SUVmax. RESULTS: A total of 25 tumor foci (mean size, 1.8 cm; median size, 1.5 cm; range, 0.6-4.7 cm) were histopathologically identified in 13 patients. Sensitivity rates of F-DCFBC PET/CT and mpMRI were 36% and 96%, respectively, for all tumors. For index lesions, the largest tumor with highest Gleason score, sensitivity rates of F-DCFBC PET/CT and mpMRI were 61.5% and 92%, respectively. The average SUVmax for primary prostate cancer was higher (5.8 ± 4.4) than that of benign prostatic hyperplasia nodules (2.1 ± 0.3) or that of normal prostate tissue (2.1 ± 0.4) at 1 hour postinjection (P = 0.0033). CONCLUSIONS: The majority of index prostate cancers are detected with F-DCFBC PET/CT, and this may be a prognostic indicator based on uptake and staging. However, for detecting prostate cancer with high sensitivity, it is important to combine prostate-specific membrane antigen PET/CT with mpMRI.


Assuntos
Antígenos de Superfície/metabolismo , Cisteína/análogos & derivados , Glutamato Carboxipeptidase II/metabolismo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia
18.
Cancer Res ; 77(9): 2197-2206, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28428283

RESUMO

Considerable advances in cancer-specific optical imaging have improved the precision of tumor resection. In comparison to traditional imaging modalities, this technology is unique in its ability to provide real-time feedback to the operating surgeon. Given the significant clinical implications of optical imaging, there is an urgent need to standardize surgical navigation tools and contrast agents to facilitate swift regulatory approval. Because fluorescence-enhanced surgery requires a combination of both device and drug, each may be developed in conjunction, or separately, which are important considerations in the approval process. This report is the result of a one-day meeting held on May 4, 2016 with officials from the National Cancer Institute, the FDA, members of the American Society of Image-Guided Surgery, and members of the World Molecular Imaging Society, which discussed consensus methods for FDA-directed human testing and approval of investigational optical imaging devices as well as contrast agents for surgical applications. The goal of this workshop was to discuss FDA approval requirements and the expectations for approval of these novel drugs and devices, packaged separately or in combination, within the context of optical surgical navigation. In addition, the workshop acted to provide clarity to the research community on data collection and trial design. Reported here are the specific discussion items and recommendations from this critical and timely meeting. Cancer Res; 77(9); 2197-206. ©2017 AACR.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Imagem Óptica/métodos , Cirurgia Assistida por Computador/métodos , Humanos , National Cancer Institute (U.S.) , Neoplasias/diagnóstico , Neoplasias/patologia , Estados Unidos , United States Food and Drug Administration
19.
J Nucl Med ; 57(1): 144-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26449839

RESUMO

Navigation with fluorescence guidance has emerged in the last decade as a promising strategy to improve the efficacy of oncologic surgery. To achieve routine clinical use, the onus is on the surgical community to objectively assess the value of this technique. This assessment may facilitate both Food and Drug Administration approval of new optical imaging agents and reimbursement for the imaging procedures. It is critical to characterize fluorescence-guided procedural benefits over existing practices and to elucidate both the costs and the safety risks. This report is the result of a meeting of the International Society of Image Guided Surgery (www.isigs.org) on February 6, 2015, in Miami, Florida, and reflects a consensus of the participants' opinions. Our objective was to critically evaluate the imaging platform technology and optical imaging agents and to make recommendations for successful clinical trial development of this highly promising approach in oncologic surgery.


Assuntos
Consenso , Neoplasias/cirurgia , Imagem Óptica/métodos , Relatório de Pesquisa , Cirurgia Assistida por Computador , Pesquisa Translacional Biomédica , Ensaios Clínicos Fase I como Assunto , Determinação de Ponto Final , Regulamentação Governamental , Humanos , Neoplasias/diagnóstico , Imagem Óptica/efeitos adversos , Imagem Óptica/instrumentação , Segurança do Paciente , Estados Unidos , United States Food and Drug Administration
20.
Neuro Oncol ; 17(9): 1188-98, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26250565

RESUMO

A recent joint meeting was held on January 30, 2014, with the US Food and Drug Administration (FDA), National Cancer Institute (NCI), clinical scientists, imaging experts, pharmaceutical and biotech companies, clinical trials cooperative groups, and patient advocate groups to discuss imaging endpoints for clinical trials in glioblastoma. This workshop developed a set of priorities and action items including the creation of a standardized MRI protocol for multicenter studies. The current document outlines consensus recommendations for a standardized Brain Tumor Imaging Protocol (BTIP), along with the scientific and practical justifications for these recommendations, resulting from a series of discussions between various experts involved in aspects of neuro-oncology neuroimaging for clinical trials. The minimum recommended sequences include: (i) parameter-matched precontrast and postcontrast inversion recovery-prepared, isotropic 3D T1-weighted gradient-recalled echo; (ii) axial 2D T2-weighted turbo spin-echo acquired after contrast injection and before postcontrast 3D T1-weighted images to control timing of images after contrast administration; (iii) precontrast, axial 2D T2-weighted fluid-attenuated inversion recovery; and (iv) precontrast, axial 2D, 3-directional diffusion-weighted images. Recommended ranges of sequence parameters are provided for both 1.5 T and 3 T MR systems.


Assuntos
Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Neuroimagem/métodos , Neuroimagem/normas , Protocolos Clínicos/normas , Ensaios Clínicos como Assunto/normas , Meios de Contraste/administração & dosagem , Humanos , Aumento da Imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA