Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Dev Cell ; 59(16): 2134-2142.e6, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38878774

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, highly heterogeneous neurodegenerative disease, underscoring the importance of obtaining information to personalize clinical decisions quickly after diagnosis. Here, we investigated whether ALS-relevant signatures can be detected directly from biopsied patient fibroblasts. We profiled familial ALS (fALS) fibroblasts, representing a range of mutations in the fused in sarcoma (FUS) gene and ages of onset. To differentiate FUS fALS and healthy control fibroblasts, machine-learning classifiers were trained separately on high-content imaging and transcriptional profiles. "Molecular ALS phenotype" scores, derived from these classifiers, captured a spectrum from disease to health. Interestingly, these scores negatively correlated with age of onset, identified several pre-symptomatic individuals and sporadic ALS (sALS) patients with FUS-like fibroblasts, and quantified "movement" of FUS fALS and "FUS-like" sALS toward health upon FUS ASO treatment. Taken together, these findings provide evidence that non-neuronal patient fibroblasts can be used for rapid, personalized assessment in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Fibroblastos , Proteína FUS de Ligação a RNA , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/genética , Mutação/genética , Masculino , Feminino , Pele/patologia , Pele/metabolismo , Aprendizado de Máquina , Pessoa de Meia-Idade
2.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826444

RESUMO

Intracellular pH (pHi) dynamics regulates diverse cell processes such as proliferation, dysplasia, and differentiation, often mediated by the protonation state of a functionally critical histidine residue in endogenous pH sensing proteins. How pHi dynamics can directly regulate gene expression and whether transcription factors can function as pH sensors has received limited attention. We tested the prediction that transcription factors with a histidine in their DNA binding domain (DBD) that forms hydrogen bonds with nucleotides can have pH-regulated activity, which is relevant to more than 85 transcription factors in distinct families, including FOX, KLF, SOX and MITF/Myc. Focusing on FOX family transcription factors, we used unbiased SELEX-seq to identify pH-dependent DNA binding motif preferences, then confirm pH-regulated binding affinities for FOXC2, FOXM1, and FOXN1 to a canonical FkhP DNA motif that are 2.5 to 7.5 greater at pH 7.0 compared with pH 7.5. For FOXC2, we also find greater activity for an FkhP motif at lower pHi in cells and that pH-regulated binding and activity are dependent on a conserved histidine (His122) in the DBD. RNA-seq with FOXC2 also reveals pH-dependent differences in enriched promoter motifs. Our findings identify pH-regulated transcription factor-DNA binding selectivity with relevance to how pHi dynamics can regulate gene expression for myriad cell behaviours.

3.
Blood ; 144(6): 639-645, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38643492

RESUMO

ABSTRACT: Secondary kinase domain mutations in BCR::ABL1 represent the most common cause of resistance to tyrosine kinase inhibitor (TKI) therapy in patients with chronic myeloid leukemia. The first 5 approved BCR::ABL1 TKIs target the adenosine triphosphate (ATP)-binding pocket. Mutations confer resistance to these ATP-competitive TKIs and those approved for other malignancies by decreasing TKI affinity and/or increasing ATP affinity. Asciminib, the first highly active allosteric TKI approved for any malignancy, targets an allosteric regulatory pocket in the BCR::ABL1 kinase C-lobe. As a non-ATP-competitive inhibitor, the activity of asciminib is predicted to be impervious to increases in ATP affinity. Here, we report several known mutations that confer resistance to ATP-competitive TKIs in the BCR::ABL1 kinase N-lobe that are distant from the asciminib binding pocket yet unexpectedly confer in vitro resistance to asciminib. Among these is BCR::ABL1 M244V, which confers clinical resistance even to escalated asciminib doses. We demonstrate that BCR::ABL1 M244V does not impair asciminib binding, thereby invoking a novel mechanism of resistance. Molecular dynamic simulations of the M244V substitution implicate stabilization of an active kinase conformation through impact on the α-C helix as a mechanism of resistance. These N-lobe mutations may compromise the clinical activity of ongoing combination studies of asciminib with ATP-competitive TKIs.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação , Trifosfato de Adenosina/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-abl/química , Niacinamida/análogos & derivados , Pirazóis
4.
Clin Cancer Res ; 29(22): 4613-4626, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37725576

RESUMO

PURPOSE: Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) or lymphoblastic lymphoma (T-LBL) have limited therapeutic options. Clinical use of genomic profiling provides an opportunity to identify targetable alterations to inform therapy. EXPERIMENTAL DESIGN: We describe a cohort of 14 pediatric patients with relapsed or refractory T-ALL enrolled on the Leukemia Precision-based Therapy (LEAP) Consortium trial (NCT02670525) and a patient with T-LBL, discovering alterations in platelet-derived growth factor receptor-α (PDGFRA) in 3 of these patients. We identified a novel mutation in PDGFRA, p.D842N, and used an integrated structural modeling and molecular biology approach to characterize mutations at D842 to guide therapeutic targeting. We conducted a preclinical study of avapritinib in a mouse patient-derived xenograft (PDX) model of FIP1L1-PDGFRA and PDGFRA p.D842N leukemia. RESULTS: Two patients with T-ALL in the LEAP cohort (14%) had targetable genomic alterations affecting PDGFRA, a FIP1-like 1 protein/PDGFRA (FIP1L1-PDGFRA) fusion and a novel mutation in PDGFRA, p.D842N. The D842N mutation resulted in PDGFRA activation and sensitivity to tested PDGFRA inhibitors. In a T-ALL PDX model, avapritinib treatment led to decreased leukemia burden, significantly prolonged survival, and even cured a subset of mice. Avapritinib treatment was well tolerated and yielded clinical benefit in a patient with refractory T-ALL. CONCLUSIONS: Refractory T-ALL has not been fully characterized. Alterations in PDGFRA or other targetable kinases may inform therapy for patients with refractory T-ALL who otherwise have limited treatment options. Clinical genomic profiling, in real time, is needed for fully informed therapeutic decision making.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Criança , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Mutação , Receptores Proteína Tirosina Quinases/genética , Linfócitos T
5.
Biochemistry ; 61(20): 2165-2176, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36161872

RESUMO

Cysteine side chains can exist in distinct oxidation states depending on the pH and redox potential of the environment, and cysteine oxidation plays important yet complex regulatory roles. Compared with the effects of post-translational modifications such as phosphorylation, the effects of oxidation of cysteine to sulfenic, sulfinic, and sulfonic acid on protein structure and function remain relatively poorly characterized. We present an analysis of the role of cysteine reactivity as a regulatory factor in proteins, emphasizing the interplay between electrostatics and redox potential as key determinants of the resulting oxidation state. A review of current computational approaches suggests underdeveloped areas of research for studying cysteine reactivity through molecular simulations.


Assuntos
Cisteína , Proteínas , Biofísica , Cisteína/química , Oxirredução , Proteínas/química , Ácidos Sulfênicos , Ácidos Sulfônicos
6.
J Chem Theory Comput ; 18(10): 6251-6258, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36166736

RESUMO

KIT is a type 3 receptor tyrosine kinase that plays a crucial role in cellular growth and proliferation. Mutations in KIT can dysregulate its active-inactive equilibrium. Activating mutations drive cancer growth, while deactivating mutations result in the loss of skin and hair pigmentation in a disease known as piebaldism. Here, we propose a method based on molecular dynamics and free energy calculations to predict the functional effect of KIT mutations. Our calculations may have important clinical implications by defining the functional significance of previously uncharacterized KIT mutations and guiding targeted therapy.


Assuntos
Piebaldismo , Proteínas Proto-Oncogênicas c-kit , Humanos , Mutação , Piebaldismo/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-kit/genética
7.
Sci Adv ; 8(4): eabi7711, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35089788

RESUMO

Cancer persister cells are able to survive otherwise lethal doses of drugs through nongenetic mechanisms, which can lead to cancer regrowth and drug resistance. The broad spectrum of molecular differences observed between persisters and their treatment-naïve counterparts makes it challenging to identify causal mechanisms underlying persistence. Here, we modulate environmental signals to identify cellular mechanisms that promote the emergence of persisters and to pinpoint actionable vulnerabilities that eliminate them. We found that interferon-γ (IFNγ) can induce a pro-persistence signal that can be specifically eliminated by inhibition of type I protein arginine methyltransferase (PRMT) (PRMTi). Mechanistic investigation revealed that signal transducer and activator of transcription 1 (STAT1) is a key component connecting IFNγ's pro-persistence and PRMTi's antipersistence effects, suggesting a previously unknown application of PRMTi to target persisters in settings with high STAT1 expression. Modulating environmental signals can accelerate the identification of mechanisms that promote and eliminate cancer persistence.


Assuntos
Antibacterianos , Neoplasias , Antibacterianos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/etiologia
8.
Bioorg Med Chem ; 46: 116349, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500187

RESUMO

Human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) is expressed in many tissues and has been implicated in atherosclerosis, cystic fibrosis and ferroptosis. However, there are few reported potent/selective inhibitors that are active ex vivo. In the current work, we report newly discovered molecules that are more potent and structurally distinct from our previous inhibitors, MLS000545091 and MLS000536924 (Jameson et al, PLoS One, 2014, 9, e104094), in that they contain a central imidazole ring, which is substituted at the 1-position with a phenyl moiety and with a benzylthio moiety at the 2-position. The initial three molecules were mixed-type, non-reductive inhibitors, with IC50 values of 0.34 ±â€¯0.05 µM for MLS000327069, 0.53 ±â€¯0.04 µM for MLS000327186 and 0.87 ±â€¯0.06 µM for MLS000327206 and greater than 50-fold selectivity versus h5-LOX, h12-LOX, h15-LOX-1, COX-1 and COX-2. A small set of focused analogs was synthesized to demonstrate the validity of the hits. In addition, a binding model was developed for the three imidazole inhibitors based on computational docking and a co-structure of h15-LOX-2 with MLS000536924. Hydrogen/deuterium exchange (HDX) results indicate a similar binding mode between MLS000536924 and MLS000327069, however, the latter restricts protein motion of helix-α2 more, consistent with its greater potency. Given these results, we designed, docked, and synthesized novel inhibitors of the imidazole scaffold and confirmed our binding mode hypothesis. Importantly, four of the five inhibitors mentioned above are active in an h15-LOX-2/HEK293 cell assay and thus they could be important tool compounds in gaining a better understanding of h15-LOX-2's role in human biology. As such, a suite of similar pharmacophores that target h15-LOX-2 both in vitro and ex vivo are presented in the hope of developing them as therapeutic agents.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Relação Dose-Resposta a Droga , Humanos , Cinética , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Estrutura Molecular , Relação Estrutura-Atividade
9.
Nature ; 593(7860): 607-611, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33883744

RESUMO

As organelles of the innate immune system, inflammasomes activate caspase-1 and other inflammatory caspases that cleave gasdermin D (GSDMD). Caspase-1 also cleaves inactive precursors of the interleukin (IL)-1 family to generate mature cytokines such as IL-1ß and IL-18. Cleaved GSDMD forms transmembrane pores to enable the release of IL-1 and to drive cell lysis through pyroptosis1-9. Here we report cryo-electron microscopy structures of the pore and the prepore of GSDMD. These structures reveal the different conformations of the two states, as well as extensive membrane-binding elements including a hydrophobic anchor and three positively charged patches. The GSDMD pore conduit is predominantly negatively charged. By contrast, IL-1 precursors have an acidic domain that is proteolytically removed by caspase-110. When permeabilized by GSDMD pores, unlysed liposomes release positively charged and neutral cargoes faster than negatively charged cargoes of similar sizes, and the pores favour the passage of IL-1ß and IL-18 over that of their precursors. Consistent with these findings, living-but not pyroptotic-macrophages preferentially release mature IL-1ß upon perforation by GSDMD. Mutation of the acidic residues of GSDMD compromises this preference, hindering intracellular retention of the precursor and secretion of the mature cytokine. The GSDMD pore therefore mediates IL-1 release by electrostatic filtering, which suggests the importance of charge in addition to size in the transport of cargoes across this large channel.


Assuntos
Inflamassomos/química , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Macrófagos/metabolismo , Proteínas de Ligação a Fosfato/química , Animais , Caspase 1/metabolismo , Microscopia Crioeletrônica , Humanos , Interleucina-1/metabolismo , Camundongos Endogâmicos C57BL , Precursores de Proteínas/metabolismo , Estrutura Quaternária de Proteína , Eletricidade Estática
10.
Cancer Discov ; 11(6): 1424-1439, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33563661

RESUMO

Despite a remarkable increase in the genomic profiling of cancer, integration of genomic discoveries into clinical care has lagged behind. We report the feasibility of rapid identification of targetable mutations in 153 pediatric patients with relapsed/refractory or high-risk leukemias enrolled on a prospective clinical trial conducted by the LEAP Consortium. Eighteen percent of patients had a high confidence Tier 1 or 2 recommendation. We describe clinical responses in the 14% of patients with relapsed/refractory leukemia who received the matched targeted therapy. Further, in order to inform future targeted therapy for patients, we validated variants of uncertain significance, performed ex vivo drug-sensitivity testing in patient leukemia samples, and identified new combinations of targeted therapies in cell lines and patient-derived xenograft models. These data and our collaborative approach should inform the design of future precision medicine trials. SIGNIFICANCE: Patients with relapsed/refractory leukemias face limited treatment options. Systematic integration of precision medicine efforts can inform therapy. We report the feasibility of identifying targetable mutations in children with leukemia and describe correlative biology studies validating therapeutic hypotheses and novel mutations.See related commentary by Bornhauser and Bourquin, p. 1322.This article is highlighted in the In This Issue feature, p. 1307.


Assuntos
Leucemia/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Biomarcadores Tumorais/genética , Criança , Estudos de Coortes , Progressão da Doença , Estudos de Viabilidade , Feminino , Humanos , Leucemia/genética , Leucemia/mortalidade , Masculino , Terapia de Alvo Molecular , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/mortalidade , Estudos Prospectivos , Estados Unidos
11.
Mol Pharm ; 18(1): 451-460, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33315406

RESUMO

Glycosaminoglycans (GAGs) such as heparan sulfate and chondroitin sulfate decorate all mammalian cell surfaces. These mucopolysaccharides act as coreceptors for extracellular ligands, regulating cell signaling, growth, proliferation, and adhesion. In glioblastoma, the most common type of primary malignant brain tumor, dysregulated GAG biosynthesis results in altered chain length, sulfation patterns, and the ratio of contributing monosaccharides. These events contribute to the loss of normal cellular function, initiating and sustaining malignant growth. Disruption of the aberrant cell surface GAGs with small molecule inhibitors of GAG biosynthetic enzymes is a potential therapeutic approach to blocking the rogue signaling and proliferation in glioma, including glioblastoma. Previously, 4-azido-xylose-α-UDP sugar inhibited both xylosyltransferase (XYLT-1) and ß-1,4-galactosyltransferase-7 (ß-GALT-7)-the first and second enzymes of GAG biosynthesis-when microinjected into a cell. In another study, 4-deoxy-4-fluoro-ß-xylosides inhibited ß-GALT-7 at 1 mM concentration in vitro. In this work, we seek to solve the enduring problem of drug delivery to human glioma cells at low concentrations. We developed a library of hydrophobic, presumed prodrugs 4-deoxy-4-fluoro-2,3-dibenzoyl-(α- or ß-) xylosides and their corresponding hydrophilic inhibitors of XYLT-1 and ß-GALT-7 enzymes. The prodrugs were designed to be activatable by carboxylesterase enzymes overexpressed in glioblastoma. Using a colorimetric MTT assay in human glioblastoma cell lines, we identified a prodrug-drug pair (4-nitrophenyl-α-xylosides) as lead drug candidates. The candidates arrest U251 cell growth at an IC50 = 380 nM (prodrug), 122 µM (drug), and U87 cells at IC50 = 10.57 µM (prodrug). Molecular docking studies were consistent with preferred binding of the α- versus ß-nitro xyloside conformer to XYLT-1 and ß-GALT-7 enzymes.


Assuntos
Glioblastoma/metabolismo , Glicosídeos/metabolismo , Animais , Linhagem Celular Tumoral , Sulfatos de Condroitina/metabolismo , Galactosiltransferases/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Simulação de Acoplamento Molecular/métodos , Pentosiltransferases/metabolismo , Pró-Fármacos/metabolismo , UDP Xilose-Proteína Xilosiltransferase
12.
Cancer Res ; 79(16): 4283-4292, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31270078

RESUMO

KIT is a type-3 receptor tyrosine kinase that is frequently mutated at exon 11 or 17 in a variety of cancers. First-generation KIT tyrosine kinase inhibitors (TKI) are ineffective against KIT exon 17 mutations, which favor an active conformation that prevents these TKIs from binding. The ATP-competitive inhibitors, midostaurin and avapritinib, which target the active kinase conformation, were developed to inhibit exon 17-mutant KIT. Because secondary kinase domain mutations are a common mechanism of TKI resistance and guide ensuing TKI design, we sought to define problematic KIT kinase domain mutations for these emerging therapeutics. Midostaurin and avapritinib displayed different vulnerabilities to secondary kinase domain substitutions, with the T670I gatekeeper mutation being selectively problematic for avapritinib. Although gatekeeper mutations often directly disrupt inhibitor binding, we provide evidence that T670I confers avapritinib resistance indirectly by inducing distant conformational changes in the phosphate-binding loop. These findings suggest combining midostaurin and avapritinib may forestall acquired resistance mediated by secondary kinase domain mutations. SIGNIFICANCE: This study identifies potential problematic kinase domain mutations for next-generation KIT inhibitors midostaurin and avapritinib.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Pirazóis/farmacologia , Pirróis/farmacologia , Estaurosporina/análogos & derivados , Triazinas/farmacologia , Linhagem Celular , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Éxons , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Proteínas Proto-Oncogênicas c-kit/química , Proteínas Proto-Oncogênicas c-kit/metabolismo , Estaurosporina/química , Estaurosporina/farmacologia
13.
Biochemistry ; 58(23): 2670-2674, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31099551

RESUMO

Progranulin (PGRN) is an evolutionarily conserved glycoprotein associated with several disease states, including neurodegeneration, cancer, and autoimmune disorders. This protein has recently been implicated in the regulation of lysosome function, whereby PGRN may bind to and promote the maturation and activity of the aspartyl protease cathepsin D (proCTSD, inactive precursor; matCTSD, mature, enzymatically active form). As the full-length PGRN protein can be cleaved into smaller peptides, called granulins, we assessed the function of these granulin peptides in binding to proCTSD and stimulating matCTSD enzyme activity in vitro. Here, we report that full-length PGRN and multi-granulin domain peptides bound to proCTSD with low to submicromolar binding affinities. This binding promoted proCTSD destabilization, the magnitude of which was greater for multi-granulin domain peptides than for full-length PGRN. Such destabilization correlated with enhanced matCTSD activity at acidic pH. The presence and function of multi-granulin domain peptides have typically been overlooked in previous studies. This work provides the first in vitro quantification of their binding and activity on proCTSD. Our study highlights the significance of multi-granulin domain peptides in the regulation of proCTSD maturation and enzymatic activity and suggests that attention to PGRN processing will be essential for the future understanding of the molecular mechanisms leading to neurodegenerative disease states with loss-of-function mutations in PGRN.


Assuntos
Catepsina D/metabolismo , Precursores Enzimáticos/metabolismo , Granulinas/metabolismo , Humanos , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Temperatura de Transição
14.
Biophys J ; 116(8): 1432-1445, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30961890

RESUMO

Human immunodeficiency virus-1 viral infectivity factor (Vif) is an intrinsically disordered protein responsible for the ubiquitination of the APOBEC3 (A3) antiviral proteins. Vif folds when it binds Cullin-RING E3 ligase 5 and the transcription cofactor CBF-ß. A five-protein complex containing the substrate receptor (Vif, CBF-ß, Elongin-B, Elongin-C (VCBC)) and Cullin5 (CUL5) has a published crystal structure, but dynamics of this VCBC-CUL5 complex have not been characterized. Here, we use molecular dynamics (MD) simulations and NMR to characterize the dynamics of the VCBC complex with and without CUL5 and an A3 protein bound. Our simulations show that the VCBC complex undergoes global dynamics involving twisting and clamshell opening of the complex, whereas VCBC-CUL5 maintains a more static conformation, similar to the crystal structure. This observation from MD is supported by methyl-transverse relaxation-optimized spectroscopy NMR data, which indicates that the VCBC complex without CUL5 is dynamic on the µs-ms timescale. Our NMR data also show that the VCBC complex is more conformationally restricted when bound to the antiviral APOBEC3F (one of the A3 proteins), consistent with our MD simulations. Vif contains a flexible linker region located at the hinge of the VCBC complex, which changes conformation in conjunction with the global dynamics of the complex. Like other substrate receptors, VCBC can exist alone or in complex with CUL5 and other proteins in cells. Accordingly, the VCBC complex could be a good target for therapeutics that would inhibit full assembly of the ubiquitination complex by stabilizing an alternate VCBC conformation.


Assuntos
Proteínas Culina/química , Citidina Desaminase/química , Simulação de Dinâmica Molecular , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Desaminases APOBEC , Subunidade beta de Fator de Ligação ao Core/química , Cristalização , Elonguina/química , Humanos , Cinética , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Ubiquitinação
15.
J Biol Chem ; 294(22): 8779-8790, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30992364

RESUMO

Tau, a member of the MAP2/tau family of microtubule-associated proteins, stabilizes and organizes axonal microtubules in healthy neurons. In neurodegenerative tauopathies, tau dissociates from microtubules and forms neurotoxic extracellular aggregates. MAP2/tau family proteins are characterized by three to five conserved, intrinsically disordered repeat regions that mediate electrostatic interactions with the microtubule surface. Here, we used molecular dynamics, microtubule-binding experiments, and live-cell microscopy, revealing that highly-conserved histidine residues near the C terminus of each microtubule-binding repeat are pH sensors that can modulate tau-microtubule interaction strength within the physiological intracellular pH range. We observed that at low pH (<7.5), these histidines are positively charged and interact with phenylalanine residues in a hydrophobic cleft between adjacent tubulin dimers. At higher pH (>7.5), tau deprotonation decreased binding to microtubules both in vitro and in cells. Electrostatic and hydrophobic characteristics of histidine were both required for tau-microtubule binding, as substitutions with constitutively and positively charged nonaromatic lysine or uncharged alanine greatly reduced or abolished tau-microtubule binding. Consistent with these findings, tau-microtubule binding was reduced in a cancer cell model with increased intracellular pH but was rapidly restored by decreasing the pH to normal levels. These results add detailed insights into the intracellular regulation of tau activity that may be relevant in both normal and pathological conditions.


Assuntos
Histidina/metabolismo , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Eletricidade Estática , Proteínas tau/genética
16.
Cell Chem Biol ; 26(5): 674-685.e6, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30853418

RESUMO

Nurr1, a nuclear receptor essential for the development, maintenance, and survival of midbrain dopaminergic neurons, is a potential therapeutic target for Parkinson's disease, a neurological disorder characterized by the degeneration of these same neurons. Efforts to identify Nurr1 agonists have been hampered by the recognition that it lacks several classic regulatory elements of nuclear receptor function, including the canonical ligand-binding pocket. Here we report that the dopamine metabolite 5,6-dihydroxyindole (DHI) binds directly to and modulates the activity of Nurr1. Using biophysical assays and X-ray crystallography, we show that DHI binds to the ligand-binding domain within a non-canonical pocket, forming a covalent adduct with Cys566. In cultured cells and zebrafish, DHI stimulates Nurr1 activity, including the transcription of target genes underlying dopamine homeostasis. These findings suggest avenues for developing synthetic Nurr1 ligands to ameliorate the symptoms and progression of Parkinson's disease.


Assuntos
Dopamina/metabolismo , Indóis/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Dopamina/química , Humanos , Indóis/química , Indóis/farmacologia , Larva/metabolismo , Simulação de Dinâmica Molecular , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/química , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Estresse Oxidativo/efeitos dos fármacos , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Termodinâmica , Transcrição Gênica/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
17.
Biochem Biophys Res Commun ; 512(2): 208-212, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30878184

RESUMO

Protein kinase CK2 has emerged as an attractive cancer therapeutic target. Previous studies have highlighted the challenge of optimizing CK2 ATP-competitive inhibitors that have low druggability due to their polycyclic ring scaffolds. Therefore the development of novel inhibitors with non-polycyclic scaffolds emerges as a promising strategy for drug discovery targeting CK2. In this current study, based on the similar predicted binding poses of the linear 2-propenone scaffold of isoliquiritigenin with that of the polycyclic inhibitor CX-4945, a series of 2-propenone derivatives containing an amine-substituted five-membered heterocycle and a benzoic acid were designed, synthesized and evaluated for their in vitro CK2 inhibition and anti-cancer activity. Compound 8b was found to be the most potent CK2 inhibitor (IC50 = 0.6 µM) with the anti-proliferative activity on HepG2 cancer cells (IC50 = 14 µM), compared to the activity of isoliquiritigenin (IC50 = 17 µM and 51 µM, respectively). Molecular docking was performed to understand the binding modes of the newly designed 2-propenone derivatives with CK2. Compound 8b formed the most favorable network of hydrogen bonds with both the hinge region and positive area. Our results indicate that CK2 derivatives with a linear 2-propenone scaffold are promising candidates for anti-cancer drug discovery.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Alcenos/química , Alcenos/farmacologia , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade
18.
Mol Inform ; 38(3): e1800089, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30307134

RESUMO

Protein kinase CK2 is considered as an emerging target in cancer therapy, and recent efforts have been made to develop its ATP-competitive inhibitors, but achieving selectivity with respect to related kinases remains challenging because of the highly conserved ATP-binding pocket of kinases. Non-ATP competitive inhibitors might solve this challenge; one such strategy is to identify compounds that target the CK2α/CK2ß interface as CK2 holoenzyme antagonists. Here we improved the binding affinity to CK2α and cell-based anti-cancer activity of a CK2ß-derived cyclic peptide (Pc) by combining structure-based computational design with experimental evaluation. By analyzing molecular dynamics simulations of Pc bound to CK2α, a series of Pc-derived peptides was rationally designed and synthesized to evaluate their binding affinity to CK2α, as well as anti-proliferative and pro-apoptotic effects against HepG2 cancer cell line. One amino acid substitutions on Pc, I192F, exhibited over 10-fold improvement in the predicted binding affinity to CK2α when compared to Pc, and a cell-permeable version, I192F-Tat, also demonstrated more potent anti-proliferative and pro-apoptotic effects against HepG2 compared to Pc. A second modification of Pc, H193W, also led to more potent cell-based activity, despite having weaker binding affinity (∼5×) to CK2α. The discovery of the I192F and H193W peptides provides new insights for further optimization of CK2 antagonist candidates as anti-cancer leads.


Assuntos
Antineoplásicos/química , Caseína Quinase II/antagonistas & inibidores , Peptídeos Cíclicos/química , Inibidores de Proteínas Quinases/química , Relação Quantitativa Estrutura-Atividade , Substituição de Aminoácidos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Caseína Quinase II/química , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Descoberta de Drogas , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Peptídeos Cíclicos/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia
19.
J Med Chem ; 61(14): 6163-6177, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29953808

RESUMO

Cancer cells rely on the chaperone heat shock protein 70 (Hsp70) for survival and proliferation. Recently, benzothiazole rhodacyanines have been shown to bind an allosteric site on Hsp70, interrupting its binding to nucleotide-exchange factors (NEFs) and promoting cell death in breast cancer cell lines. However, proof-of-concept molecules, such as JG-98, have relatively modest potency (EC50 ≈ 0.7-0.4 µM) and are rapidly metabolized in animals. Here, we explored this chemical series through structure- and property-based design of ∼300 analogs, showing that the most potent had >10-fold improved EC50 values (∼0.05 to 0.03 µM) against two breast cancer cells. Biomarkers and whole genome CRISPRi screens confirmed members of the Hsp70 family as cellular targets. On the basis of these results, JG-231 was found to reduce tumor burden in an MDA-MB-231 xenograft model (4 mg/kg, ip). Together, these studies support the hypothesis that Hsp70 may be a promising target for anticancer therapeutics.


Assuntos
Benzotiazóis/química , Benzotiazóis/farmacologia , Desenho de Fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Compostos de Piridínio/química , Tiazóis/química , Regulação Alostérica/efeitos dos fármacos , Animais , Benzotiazóis/metabolismo , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico HSP70/química , Humanos , Células MCF-7 , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Relação Estrutura-Atividade
20.
J Biol Chem ; 293(11): 4014-4025, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29414793

RESUMO

Protein-protein interactions (PPIs) are an important category of putative drug targets. Improvements in high-throughput screening (HTS) have significantly accelerated the discovery of inhibitors for some categories of PPIs. However, methods suitable for screening multiprotein complexes (e.g. those composed of three or more different components) have been slower to emerge. Here, we explored an approach that uses reconstituted multiprotein complexes (RMPCs). As a model system, we chose heat shock protein 70 (Hsp70), which is an ATP-dependent molecular chaperone that interacts with co-chaperones, including DnaJA2 and BAG2. The PPIs between Hsp70 and its co-chaperones stimulate nucleotide cycling. Thus, to re-create this ternary protein system, we combined purified human Hsp70 with DnaJA2 and BAG2 and then screened 100,000 diverse compounds for those that inhibited co-chaperone-stimulated ATPase activity. This HTS campaign yielded two compounds with promising inhibitory activity. Interestingly, one inhibited the PPI between Hsp70 and DnaJA2, whereas the other seemed to inhibit the Hsp70-BAG2 complex. Using secondary assays, we found that both compounds inhibited the PPIs through binding to allosteric sites on Hsp70, but neither affected Hsp70's intrinsic ATPase activity. Our RMPC approach expands the toolbox of biochemical HTS methods available for studying difficult-to-target PPIs in multiprotein complexes. The results may also provide a starting point for new chemical probes of the Hsp70 system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Descoberta de Drogas , Proteínas de Choque Térmico HSP40/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Preparações Farmacêuticas/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA