Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(5): e0126860, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25993131

RESUMO

Huntington disease (HD; OMIM 143100), a progressive neurodegenerative disorder, is caused by an expanded trinucleotide CAG (polyQ) motif in the HTT gene. Cardiovascular symptoms, often present in early stage HD patients, are, in general, ascribed to dysautonomia. However, cardio-specific expression of polyQ peptides caused pathological response in murine models, suggesting the presence of a nervous system-independent heart phenotype in HD patients. A positive correlation between the CAG repeat size and severity of symptoms observed in HD patients has also been observed in in vitro HD cellular models. Here, we test the suitability of human embryonic stem cell (hESC) lines carrying HD-specific mutation as in vitro models for understanding molecular mechanisms of cardiac pathology seen in HD patients. We have differentiated three HD-hESC lines into cardiomyocytes and investigated CAG stability up to 60 days after starting differentiation. To assess CAG stability in other tissues, the lines were also subjected to in vivo differentiation into teratomas for 10 weeks. Neither directed differentiation into cardiomyocytes in vitro nor in vivo differentiation into teratomas, rich in immature neuronal tissue, led to an increase in the number of CAG repeats. Although the CAG stability might be cell line-dependent, induced pluripotent stem cells generated from patients with larger numbers of CAG repeats could have an advantage as a research tool for understanding cardiac symptoms of HD patients.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias Humanas/metabolismo , Doença de Huntington/patologia , Mutação/genética , Miócitos Cardíacos/citologia , Expansão das Repetições de Trinucleotídeos/genética , Linhagem Celular , Humanos , Células-Tronco Pluripotentes/citologia
2.
Stem Cell Reports ; 2(5): 675-89, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24936454

RESUMO

Cornification and epidermal barrier defects are associated with a number of clinically diverse skin disorders. However, a suitable in vitro model for studying normal barrier function and barrier defects is still lacking. Here, we demonstrate the generation of human epidermal equivalents (HEEs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). HEEs are structurally similar to native epidermis, with a functional permeability barrier. We exposed a pure population of hESC/iPSC-derived keratinocytes, whose transcriptome corresponds to the gene signature of normal primary human keratinocytes (NHKs), to a sequential high-to-low humidity environment in an air/liquid interface culture. The resulting HEEs had all of the cellular strata of the human epidermis, with skin barrier properties similar to those of normal skin. Such HEEs generated from disease-specific iPSCs will be an invaluable tool not only for dissecting molecular mechanisms that lead to epidermal barrier defects but also for drug development and screening.


Assuntos
Células-Tronco Embrionárias/metabolismo , Epiderme/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Metilação de DNA , Células-Tronco Embrionárias/citologia , Transição Epitelial-Mesenquimal , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Queratina-14/genética , Queratina-14/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Permeabilidade , Análise de Componente Principal , Teratoma/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA