Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells Int ; 2019: 9431894, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191689

RESUMO

Osteoarthritis is a significant and costly cause of pain for both humans and horses. The horse has been identified as a suitable model for human osteoarthritis. Regenerative therapy with allogeneic mesenchymal stem cells (MSCs) is a promising treatment, but the safety of this procedure continues to be debated. The aim of this study is to evaluate the safety of intra-articular injections of allogeneic MSCs on healthy joints by comparing two different dosages and two different tissue sources, namely, bone marrow and umbilical cord blood, with a placebo treatment on the same individuals. We also assessed the influence of autologous versus allogeneic cells for bone marrow-derived MSC treatment. Twelve clinically sound horses were subjected to injections in their 4 fetlock joints. Each of the three fetlocks was administered a different MSC type, and the remaining fetlock was injected with phosphate-buffered saline as a control. Six horses received 10 million cells per joint, and the 6 other horses received 20 million cells per joint. Clinical and ultrasound monitoring revealed that allogeneic bone marrow-derived MSCs induced significantly more synovial effusion compared to umbilical cord blood-derived MSCs but no significant difference was noted within the synovial fluid parameters. The administration of 10 million cells in horses triggered significantly more inflammatory signs than the administration of 20 million cells. Mesenchymal stem cell injections induced mild to moderate local inflammatory signs compared to the placebo, with individual variability in the sensitivity to the same line of MSCs. Understanding the behavior of stem cells when injected alone is a step towards the safer use of new strategies in stem cell therapy, where the use of either MSC secretome or MSCs combined with biomaterials could enhance their viability and metabolic activity.

2.
Int J Mol Sci ; 19(2)2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29439436

RESUMO

Cartilage engineering is a new strategy for the treatment of cartilage damage due to osteoarthritis or trauma in humans. Racehorses are exposed to the same type of cartilage damage and the anatomical, cellular, and biochemical properties of their cartilage are comparable to those of human cartilage, making the horse an excellent model for the development of cartilage engineering. Human mesenchymal stem cells (MSCs) differentiated into chondrocytes with chondrogenic factors in a biomaterial appears to be a promising therapeutic approach for direct implantation and cartilage repair. Here, we characterized equine umbilical cord blood-derived MSCs (eUCB-MSCs) and evaluated their potential for chondrocyte differentiation for use in cartilage repair therapy. Our results show that isolated eUCB-MSCs had high proliferative capacity and differentiated easily into osteoblasts and chondrocytes, but not into adipocytes. A three-dimensional (3D) culture approach with the chondrogenic factors BMP-2 and TGF-ß1 potentiated chondrogenic differentiation with a significant increase in cartilage-specific markers at the mRNA level (Col2a1, Acan, Snorc) and the protein level (type II and IIB collagen) without an increase in hypertrophic chondrocyte markers (Col10a1 and Mmp13) in normoxia and in hypoxia. However, these chondrogenic factors caused an increase in type I collagen, which can be reduced using small interfering RNA targeting Col1a2. This study provides robust data on MSCs characterization and demonstrates that eUCB-MSCs have a great potential for cartilage tissue engineering.


Assuntos
Diferenciação Celular , Condrócitos/citologia , Condrogênese , Células-Tronco Mesenquimais/citologia , Animais , Proteína Morfogenética Óssea 2/farmacologia , Cartilagem/fisiologia , Células Cultivadas , Condrócitos/metabolismo , Colágeno/genética , Colágeno/metabolismo , Sangue Fetal/citologia , Cavalos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Regeneração , Fator de Crescimento Transformador beta1/farmacologia
3.
Int J Mol Sci ; 19(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389887

RESUMO

Articular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA), a degenerative disease that is currently incurable. Similar musculoskeletal disorders also affect horses and OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. This study aims to improve the autologous chondrocyte implantation technique by using equine mesenchymal stem cells (MSCs) from bone marrow differentiated into chondrocytes that can be implanted in the chondral lesion. The optimized protocol relies on culture under hypoxia within type I/III collagen sponges. Here, we explored three parameters that influence MSC differentiation: culture times, growth factors and RNA interference strategies. Our results suggest first that an increase in culture time from 14 to 28 or 42 days lead to a sharp increase in the expression of chondrocyte markers, notably type II collagen (especially the IIB isoform), along with a concomitant decrease in HtrA1 expression. Nevertheless, the expression of type I collagen also increased with longer culture times. Second, regarding the growth factor cocktail, TGF-ß3 alone showed promising result but the previously tested association of BMP-2 and TGF-ß1 better limits the expression of type I collagen. Third, RNA interference targeting Col1a2 as well as Col1a1 mRNA led to a more significant knockdown, compared with a conventional strategy targeting Col1a1 alone. This chondrogenic differentiation strategy showed a strong increase in the Col2a1:Col1a1 mRNA ratio in the chondrocytes derived from equine bone marrow MSCs, this ratio being considered as an index of the functionality of cartilage. These data provide evidence of a more stable chondrocyte phenotype when combining Col1a1 and Col1a2 siRNAs associated to a longer culture time in the presence of BMP-2 and TGF-ß1, opening new opportunities for preclinical trials in the horse. In addition, because the horse is an excellent model for human articular cartilage disorders, the equine therapeutic approach developed here can also serve as a preclinical step for human medicine.


Assuntos
Diferenciação Celular/genética , Condrócitos/metabolismo , Colágeno Tipo I/genética , Células-Tronco Mesenquimais/metabolismo , RNA Interferente Pequeno/genética , Fatores de Crescimento Transformadores/genética , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Condrócitos/citologia , Condrogênese/genética , Cavalos , Humanos , Células-Tronco Mesenquimais/citologia , Osteoartrite/terapia , Fenótipo , Interferência de RNA , Engenharia Tecidual/métodos
4.
Stem Cell Rev Rep ; 13(5): 611-630, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28597211

RESUMO

Articular cartilage presents a poor capacity for self-repair. Its structure-function are frequently disrupted or damaged upon physical trauma or osteoarthritis in humans. Similar musculoskeletal disorders also affect horses and are the leading cause of poor performance or early retirement of sport- and racehorses. To develop a therapeutic solution for horses, we tested the autologous chondrocyte implantation technique developed on human bone marrow (BM) mesenchymal stem cells (MSCs) on horse BM-MSCs. This technique involves BM-MSC chondrogenesis using a combinatory approach based on the association of 3D-culture in collagen sponges, under hypoxia in the presence of chondrogenic factors (BMP-2 + TGF-ß1) and siRNA to knockdown collagen I and HtrA1. Horse BM-MSCs were characterized before being cultured in chondrogenic conditions to find the best combination to enhance, stabilize, the chondrocyte phenotype. Our results show a very high proliferation of MSCs and these cells satisfy the criteria defining stem cells (pluripotency-surface markers expression). The combination of BMP-2 + TGF-ß1 strongly induces the chondrogenic differentiation of MSCs and prevents HtrA1 expression. siRNAs targeting Col1a1 and Htra1 were functionally validated. Ultimately, the combined use of specific culture conditions defined here with specific growth factors and a Col1a1 siRNAs (50 nM) association leads to the in vitro synthesis of a hyaline-type neocartilage whose chondrocytes present an optimal phenotypic index similar to that of healthy, differentiated chondrocytes. Our results lead the way to setting up pre-clinical trials in horses to better understand the reaction of neocartilage substitute and to carry out a proof-of-concept of this therapeutic strategy on a large animal model.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Cartilagem Hialina/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese/genética , Colágeno Tipo I/antagonistas & inibidores , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Regulação da Expressão Gênica , Serina Peptidase 1 de Requerimento de Alta Temperatura A/antagonistas & inibidores , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Cavalos , Cartilagem Hialina/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Engenharia Tecidual/métodos
5.
Vet J ; 197(1): 36-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23642464

RESUMO

The possible aetiology of osteochondrosis and, to a lesser extent, other developmental orthopaedic diseases or juvenile osteochondral conditions (JOCC), has been intensively investigated. However, most studies have focused on single factors of this multi-factorial disorder, or have been conducted under experimental conditions. This paper aims to present and discuss the scientific background of the BOSAC (Breeding, Osteochondral Status and Athletic Career) research program, a multi-factorial investigation on JOCC risk factors in field conditions. The epidemiology of JOCC in horses born in Normandy between 2002 and 2004 was studied. Horses were subjected to repeated body measurements, blood sampling and locomotion evaluation from birth until yearling sales. A radiographic examination, including 10 views of the limbs, was performed on each subject at approximately 6 and 17months of age. Information on nutrition and management programmes was collected by specialists from visits to the farms and the use of questionnaires. A total of 393 foals of three French breeds were monitored from birth to weaning, and 321 of these remained available for further follow-up, making the study unique as regards both the number of subjects and the variety of information collected. The study was designed to describe the evolution of JOCC, and determine possible early markers, risk factors and prognostic factors with respect to performance. Relevant data, suitable for epidemiological analyses, were collected under various field conditions that reflect current management practices in Normandy, France's main horse breeding region.


Assuntos
Envelhecimento , Doenças do Desenvolvimento Ósseo/veterinária , Doenças dos Cavalos/etiologia , Osteocondrose/veterinária , Animais , Doenças do Desenvolvimento Ósseo/epidemiologia , Doenças do Desenvolvimento Ósseo/etiologia , Doenças do Desenvolvimento Ósseo/patologia , França/epidemiologia , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/patologia , Cavalos , Osteocondrose/epidemiologia , Osteocondrose/etiologia , Osteocondrose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA