Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 13(1): 529, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092627

RESUMO

BACKGROUND: Bovine besnoitiosis, an emerging disease in Europe that can be transmitted by vectors, is caused by the apicomplexan Besnoitia besnoiti. Bovine besnoitiosis is difficult to control due to the complexity of its diagnosis in the acute stage of the disease, poor treatment success and chronically asymptomatic cattle acting as parasite reservoirs. When serological prevalence is low, detection and specific culling of seropositive cattle is feasible; however, economic considerations preclude this approach when serological prevalence is high. The aims of this study were to evaluate the accuracy of detection of super-spreaders in highly infected herds and to test their selective elimination as a new control strategy for bovine besnoitiosis. METHODS: Previous real-time PCR analyses performed on skin tissues from 160 asymptomatic animals sampled at slaughterhouses showed that the tail base was the best location to evaluate the dermal parasite DNA load. All seropositive animals (n = 518) from eight dairy or beef cattle farms facing a high serological prevalence of besnoitiosis were sampled at the tail base and their skin sample analysed by real-time PCR. A recommendation of rapid and selective culling of super-spreaders was formulated and provided to the cattle breeders. Subsequent serological monitoring of naïve animals was used to evaluate the interest of this control strategy over time. RESULTS: Among the 518 seropositive animals, a low proportion of individuals (14.5%) showed Cq values below 36, 17.8% had doubtful results (36 < Cq ≤ 40) and 67.8% had negative PCR results. These proportions were grossly similar on the eight farms, regardless of their production type (beef or dairy cattle), size, geographical location or history of besnoitiosis. Within two weeks of the biopsy, the rapid culling of super-spreaders was implemented on only three farms. The numbers of newly infected animals were lower on these farms compared to those where super-spreaders were maintained in the herd. CONCLUSIONS: Real-time PCR analyses performed on skin biopsies of seropositive cattle showed huge individual variabilities in parasite DNA load. The rapid culling of individuals considered as super-spreaders seems to be a new and encouraging strategy for bovine besnoitiosis control.


Assuntos
Portador Sadio/veterinária , Bovinos/parasitologia , Coccidiose/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Sarcocystidae/isolamento & purificação , Animais , Anticorpos Antiprotozoários/sangue , Biópsia , Portador Sadio/parasitologia , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Coccidiose/diagnóstico , Coccidiose/prevenção & controle , DNA de Protozoário , Testes Diagnósticos de Rotina/métodos , Patologia Molecular , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sarcocystidae/genética , Sarcocystidae/imunologia , Testes Sorológicos , Pele/parasitologia
2.
Parasitology ; 147(4): 401-409, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31840621

RESUMO

Besnoitia besnoiti is an obligate intracellular apicomplexan protozoan parasite, which causes bovine besnoitiosis. Recently increased emergence within Europe was responsible for significant economic losses in the cattle industry due to the significant reduction of productivity. However, still limited knowledge exists on interactions between B. besnoiti and host innate immune system. Here, B. besnoiti bradyzoites were successfully isolated from tissue cysts located in skin biopsies of a naturally infected animal, and we aimed to investigate for the first time reactions of polymorphonuclear neutrophils (PMN) exposed to these vital bradyzoites. Freshly isolated bovine PMN were confronted to B. besnoiti bradyzoites. Scanning electron microscopy (s.e.m.)- and immunofluorescence microscopy-analyses demonstrated fine extracellular networks released by exposed bovine PMN resembling suicidal NETosis. Classical NETosis components were confirmed via co-localization of extracellular DNA decorated with histone 3 (H3) and neutrophil elastase (NE). Live cell imaging by 3D holotomographic microscopy (Nanolive®) unveiled rapid vital NETosis against this parasite. A significant increase of autophagosomes visualized by specific-LC3B antibodies and confocal microscopy was observed in B. besnoiti-stimulated bovine PMN when compared to non-stimulated group. As such, a significant positive correlation (r = 0.37; P = 0.042) was found between B. besnoiti-triggered suicidal NETosis and autophagy. These findings suggest that vital- as well as suicidal-NETosis might play a role in early innate host defence mechanisms against released B. besnoiti bradyzoites from tissue cysts, and possibly hampering further parasitic replication. Our data generate first hints on autophagy being associated with B. besnoiti bradyzoite-induced suicidal NETosis and highlighting for first time occurrence of parasite-mediated vital NETosis.


Assuntos
Autofagia , Doenças dos Bovinos/imunologia , Coccidiose/veterinária , Neutrófilos/imunologia , Sarcocystidae/fisiologia , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Coccidiose/imunologia , Coccidiose/parasitologia , Feminino , França
3.
Parasit Vectors ; 9: 115, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26928430

RESUMO

BACKGROUND: Bovine besnoitiosis, caused by the protozoan Besnoitia besnoiti, reduces productivity and fertility of affected herds. Besnoitiosis continues to expand in Europe and no effective control tools are currently available. Experimental models are urgently needed. Herein, we describe for the first time the kinetics of standardised in vitro models for the B. besnoiti lytic cycle. This will aid to study the pathogenesis of the disease, in the screening for vaccine targets and drugs potentially useful for the treatment of besnoitiosis. METHODS: We compared invasion and proliferation of one B. tarandi (from Finland) and seven B. besnoiti isolates (Bb-Spain1, Bb-Spain2, Bb-Israel, Bb-Evora03, Bb-Ger1, Bb-France, Bb-Italy2) in MARC-145 cell culture. Host cell invasion was studied at 4, 6, 8 and 24 h post infection (hpi), and proliferation characteristics were compared at 24, 48, 72, 96, 120, and 144 hpi. RESULTS: In Besnoitia spp., the key parameters that determine the sequential adhesion-invasion, proliferation and egress steps are clearly distinct from those in the related apicomplexans Toxoplasma gondii and Neospora caninum. Besnoitia spp. host cell invasion is a rather slow process, since only 50 % of parasites were found intracellular after 3-6 h of exposure to host cells, and invasion still took place after 24 h. Invasion efficacy was significantly higher for Bb-France, Bb-Evora03 and Bb-Israel. In addition, the time span for endodyogeny to take place was as long as 18-35 h. Bb-Israel and B. tarandi isolates were most prolific, as determined by the tachyzoite yield at 72 hpi. The total tachyzoite yield could not be predicted neither by invasion-related parameters (velocity and half time invasion) nor by proliferation parameters (lag phase and doubling time (dT)). The lytic cycle of Besnoitia was asynchronous as evidenced by the presence of three different plaque-forming tachyzoite categories (lysis plaques, large and small parasitophorous vacuoles). CONCLUSIONS: This study provides first insights into the lytic cycle of B. besnoiti isolates and a standardised in vitro model that allows screening of drug candidates for the treatment of besnoitiosis.


Assuntos
Proliferação de Células , Células Epiteliais/parasitologia , Modelos Biológicos , Sarcocystidae/crescimento & desenvolvimento , Animais , Linhagem Celular , Haplorrinos
4.
Parasitol Res ; 114(10): 3815-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26143866

RESUMO

Cattle besnoitiosis due to Besnoitia besnoiti is spreading across Europe and is responsible for severe economic losses in newly infected herds. Experimentally speaking, rabbits have been found to be susceptible to this parasite. The adaptation of B. besnoiti to rabbits may offer a new, easier and cheaper model of investigation for this disease. This study compared the virulence between tachyzoites and bradyzoites of B. besnoiti in rabbits. Eighteen New Zealand rabbits were allocated into three groups of six animals each. The rabbits from the control (group C), "tachyzoite" (group T) and "bradyzoite" (group B) groups were subcutaneously injected in the right flank with 66 µg of ovalbumin, 6.10(6) tachyzoites (125th passage on Vero cells) and 6.10(6) bradyzoites (collected from a natural infected cow) of B. besnoiti, respectively. Clinical follow-up and blood sampling for serological survey and qPCR were performed during 10 weeks until euthanasia. Molecular and immunohistochemistry examination was achieved on 25 samples of tissue per rabbit. Seroconversion occurred in group T without any clinical signs. Rabbits of group B exhibited a febrile condition (temperature above 40 °C from day 8 to day 11 following injection) with positive qPCR in blood. Cysts of B. besnoiti were found on skin samples and organs of rabbits from group B in tissue explored with threshold cycle (Ct) values below 30. These results suggest a higher virulence of bradyzoites in rabbits than Vero cell-cultivated tachyzoites. The proposed model could be used to assess the in vivo effectiveness of vaccine or drugs against cattle besnoitiosis.


Assuntos
Coccidiose/veterinária , Coelhos/parasitologia , Sarcocystidae/patogenicidade , Animais , Bovinos , Chlorocebus aethiops , Coccidiose/parasitologia , Europa (Continente) , Feminino , Imuno-Histoquímica/veterinária , Sarcocystidae/fisiologia , Células Vero , Virulência
5.
Parasitol Res ; 114(3): 1045-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25582566

RESUMO

Bartonella henselae is the causative agent of cat scratch disease in humans, which is recognized as an emerging zoonotic disease. Ctenocephalides felis is the main vector, and transmission of B. henselae infection between cats and humans occurs mainly through infected flea feces. Control of feline infestation with this arthropod vector therefore provides an important strategy for the prevention of infection of both humans and cats. In the present study, a new challenge model is used to evaluate the efficacy of selamectin (Stronghold(®) spot on) in the prevention of B. henselae transmission by C. felis. In this new challenge model, domestic cats were infected by direct application of B. henselae-positive fleas. The fleas used for infestation were infected by feeding on blood that contained in vitro-cultured B. henselae. The direct application of the fleas to the animals and the use of different B. henselae strains ensured a high and consistent challenge. Two groups of six cats were randomly allocated on pre-treatment flea counts to either control (untreated cats) or the selamectin-treated group with one pipette per cat according to the label instruction. Stronghold (selamectin 6 % spot on solution) was administered on days 0 and 32. On days 3, 10, 19, 25, and 31, each cat was infested by direct application of 20 fleas that fed on blood inoculated with B. henselae. Polymerase chain reaction (PCR) on pooled fleas confirmed that the fleas were infected. Blood samples were collected from each cat on days -3 (prior to flea infestation and treatment), 9, 17, 24, 30, 37, and 44 and assayed for B. henselae antibodies using an indirect immunofluorescence (IFA), for the presence of bacteria by bacterial culture and for B. henselae DNA presence by PCR. Cats were also assessed on a daily basis for general health. There were no abnormal health observations during the study and none of the animals required concomitant treatment. None of the cats displayed any clinical signs of bartonellosis during the study. In the untreated group, all cats became bacteremic within 17 to 44 days. None of the selamectin-treated cats became positive during the study. It was concluded that Stronghold(®) spot on administered to cats was efficacious in the prevention of the transmission of B. henselae by fleas to cats in a high-challenge model.


Assuntos
Angiomatose Bacilar/prevenção & controle , Bartonella henselae/fisiologia , Doenças do Gato/prevenção & controle , Ctenocephalides/microbiologia , Ivermectina/análogos & derivados , Angiomatose Bacilar/tratamento farmacológico , Angiomatose Bacilar/transmissão , Animais , Anticorpos Antibacterianos/sangue , Antiparasitários/administração & dosagem , Vetores Artrópodes/microbiologia , Doenças do Gato/diagnóstico , Doenças do Gato/tratamento farmacológico , Doenças do Gato/transmissão , Gatos , Infestações por Pulgas/microbiologia , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Ivermectina/administração & dosagem , Reação em Cadeia da Polimerase , Zoonoses/prevenção & controle
6.
Vet Parasitol ; 174(1-2): 19-25, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-20837381

RESUMO

Larvae causing obligatory myiasis are numerous and they may affect cutaneous and subcutaneous tissues, wounds, nasopharyngeal cavities (nasal bots), internal organs and the digestive tract (bots) of domestic and wild animals and humans as well. Nasal bots belong to the Family Oestridae, Subfamily Oestrinae, which includes several important genera: Oestrus, Kirkioestrus, and Gedoelstia infecting Artiodactyla (except Cervidae) in Africa and Eurasia, Cephenemyia and Pharyngomyia infecting Cervidae, Rhinoestrus infecting horses, Cephalopina infecting camels, Pharyngobolus infecting African elephants, and Tracheomyia infecting Australian kangaroos. Nasal bots are widespread in Mediterranean and tropical areas and in affected animals they induce sneezing and nasal discharge which may become caked with dust making breathing very difficult. The aforementioned species of larvae are host-specific but sometimes the may be deposited in human eyes inducing a painful opthalmomyiasis of short duration. The first fascinating trait of these parasites is the very efficient morphological and biological adaptations to parasitism they show either as larvae or as adults, in order to facilitate their survival and search for a suitable host. Nasal bots have reached different degrees of complexity in their life cycles. Indeed, while for some species (e.g., Oestrus ovis, Rhinoestrus usbekistanicus) larvae are injected by flies directly into nostrils and develop in the sinuses before being ejected for external pupation, some other species migrate from eyes to blood before returning to nasal cavities either through the ethmoid bone (Gedoelstia hässleri) or via lungs and bronchi (Gedoelstia cristata). Moreover, larvae are very well-adapted to their environment being able to undergo through hypobiosis either inside or outside the host, according to the climatic environmental conditions and seasonality. The second fascinating trait of nasal bots is related to host behavioural and immune responses against the infection. Host behaviour may in fact prevent larviposition and inflammatory/immune reactions limit larval development. The main pathophysiological mechanisms involve mast cells and eosinophils which destroy the larvae in sensitized animals. The intense eosinophilic reaction has side effects both locally (i.e. on the nasal mucosa) and also generally, with possible interactions with gastrointestinal strongyles (e.g., both worm burdens and fecundity decreased in lambs infected by O. ovis). Infected animals (e.g., sheep, goat, camel, and donkey) firstly suffer from fly strike, when adult flies inject first stage larvae on nostrils: sheep may try to avoid fly swarms but eventually Rangifer tarandus can only manage a terror-stricken look! Secondly, hosts will suffer from myiasis with typical nasal discharge and sneezing related to sinusitis. Clinical manifestations may vary: for example O. ovis induces severe clinical signs in sheep whilst produces few effects in goats! These parasites are diffused in many Mediterranean and tropical countries. Unfortunately, it is commonly believed that bacterial infections induced by nasal bots are of greater clinical importance: this view is not substantiated and the control of this condition depends on treatment with macrocyclic lactones, closantel and nitroxynil. Reinfections are common, and controlling nasal bots is not so simple.


Assuntos
Artiodáctilos/parasitologia , Dípteros/fisiologia , Miíase/parasitologia , Doenças Nasais/veterinária , Perissodáctilos/parasitologia , Adaptação Biológica , Animais , Interações Hospedeiro-Parasita , Humanos , Miíase/epidemiologia , Doenças Nasais/epidemiologia , Doenças Nasais/parasitologia
7.
Vet Res ; 34(2): 231-41, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12657215

RESUMO

Cellular and humoral local responses were investigated following repetitive artificial Oestrus ovis infections in lambs. The presence of larvae induced a huge local recruitment of either leucocytes (T and B lymphocytes, macrophages) or granulocytes (eosinophils, mast cells and globule leucocytes). This cellular response was more pronounced in the ethmoid and sinus (development sites of second and third instar larvae) than in the septum or turbinates where first instar larvae migrate. Infected lambs produced Oestrus ovis specific IgG and IgA antibodies in their mucus. This local humoral response was mainly directed against larval salivary gland antigens and not against larval digestive tract antigens. Compared to the control animals, the sinusal mucosa of infected animals was extremely thickened and the epithelium exhibited hyperplasia, metaplasia and eosinophilic exocytosis. The possible roles of these local immune responses in the regulation of O. ovis larvae populations in sheep are discussed.


Assuntos
Anticorpos/imunologia , Dípteros/imunologia , Dípteros/fisiologia , Leucócitos/imunologia , Miíase/imunologia , Carneiro Doméstico/imunologia , Carneiro Doméstico/parasitologia , Animais , Feminino , Granulócitos/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Larva/imunologia , Larva/fisiologia , Masculino , Miíase/parasitologia , Miíase/veterinária , Mucosa Nasal/imunologia , Nasofaringe/imunologia , Glândulas Salivares/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA