Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
J Dtsch Dermatol Ges ; 21(11): 1320-1327, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37845021

RESUMO

BACKGROUND: Primary cutaneous lymphomas (PCL) are rare skin tumors of lymphoproliferative neoplasms and belong to the heterogeneous group of non-Hodgkin's lymphomas. PCL encompass a broad spectrum of clinical and histologic manifestations, with cutaneous T-cell lymphoma (CTCL) being the most common (73%). Due to the rarity of the diseases, population-based studies of care and epidemiology are limited. PATIENTS AND METHODS: Based on anonymized, age- and sex-adjusted SHI (statutory health insurance) claims data of approximately five million SHI-insured patients, a retrospective analysis was conducted over a six-year period (2012-2017) to determine the prevalence, incidence, and lethality in patients with mature-cell T/NK-cell lymphoma in Germany. RESULTS: A total of 1,336 patients with T-cell lymphoma were identified during the observation period. The six-year prevalence ranged from 27.35 to 43.58 per 100,000. Patients were 65% male with a mean age of 66 years (SD 15). There were 246 patients (approx. 20%) who died within the 6 years, up to 7% per year. The calculated incidence in 153 identified patients in 2017 is 3.65 to 3.92 per 100,000. CONCLUSIONS: For the first time, valid epidemiologic findings of patients with mature T-cell and NK-cell lymphomas were obtained using SHI claims data in Germany. Further analyses are needed to gain a deeper insight into the healthcare reality of patients with this rare disease.


Assuntos
Linfoma Cutâneo de Células T , Micose Fungoide , Síndrome de Sézary , Neoplasias Cutâneas , Humanos , Masculino , Idoso , Feminino , Estudos Transversais , Estudos Retrospectivos , Linfoma Cutâneo de Células T/epidemiologia , Linfoma Cutâneo de Células T/patologia , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/patologia , Alemanha/epidemiologia , Micose Fungoide/patologia
4.
J Dtsch Dermatol Ges ; 20(5): 643-651, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35499207

RESUMO

BACKGROUND: Cutaneous T-cell lymphomas (CTCLs) are rare forms of non-Hodgkin's lymphoma of T-cell origin that occur mainly in the skin. The most common form is mycosis fungoides (MF), but Sézary syndrome (SS), a more aggressive form of CTCL, is another relevant subgroup. Due to the rare nature of the disease, population-based studies of the epidemiology and disease burden and insights into care delivery are limited. PATIENTS AND METHODS: Based on an anonymized, age and sex-adjusted routine dataset comprising approximately five million people with statutory health insurance, a retrospective, longitudinal healthcare research study was conducted over a six-year period (2012-2017). RESULTS: In 55 % of patients with MF and SS, the initial diagnosis was documented in an outpatient setting; in 59 % of cases by a dermatologist. Immunophenotyping by flow cytometry is considered an important investigative tool for the detection and follow-up surveillance of blood involvement of cutaneous lymphomas, as the disease stage is the most important prognostic factor in MF and SS; this was performed in only 10 % of patients. The first-line treatment was topical (76 %), in particular with corticosteroids (66 %). CONCLUSIONS: The findings from this healthcare research point to the need for increased guideline-based care.


Assuntos
Linfoma Cutâneo de Células T , Micose Fungoide , Síndrome de Sézary , Neoplasias Cutâneas , Alemanha/epidemiologia , Humanos , Linfoma Cutâneo de Células T/patologia , Micose Fungoide/diagnóstico , Micose Fungoide/epidemiologia , Micose Fungoide/terapia , Estudos Retrospectivos , Síndrome de Sézary/diagnóstico , Síndrome de Sézary/epidemiologia , Síndrome de Sézary/terapia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/terapia
5.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570968

RESUMO

Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Células-Tronco Adultas/citologia , Animais , Diferenciação Celular , Células Cultivadas , Meios de Cultivo Condicionados/química , Feminino , Células-Tronco Mesenquimais/metabolismo , Cultura Primária de Células , Proteômica , Ratos , Transplante de Células-Tronco
6.
Glia ; 68(2): 393-406, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31633850

RESUMO

Apart from dedicated oligodendroglial progenitor cells, adult neural stem cells (aNSCs) can also give rise to new oligodendrocytes in the adult central nervous system (CNS). This process mainly confers myelinating glial cell replacement in pathological situations and can hence contribute to glial heterogeneity. Our previous studies demonstrated that the p57kip2 gene encodes an intrinsic regulator of glial fate acquisition and we here investigated to what degree its modulation can affect stem cell-dependent oligodendrogenesis in different CNS environments. We therefore transplanted p57kip2 knockdown aNSCs into white and gray matter (WM and GM) regions of the mouse brain, into uninjured spinal cords as well as in the vicinity of spinal cord injuries and evaluated integration and differentiation in vivo. Our experiments revealed that under healthy conditions intrinsic suppression of p57kip2 as well as WM localization promote differentiation toward myelinating oligodendrocytes at the expense of astrocyte generation. Moreover, p57kip2 knockdown conferred a strong benefit on cell survival augmenting net oligodendrocyte generation. In the vicinity of hemisectioned spinal cords, the gene knockdown led to a similar induction of oligodendroglial features; however, newly generated oligodendrocytes appeared to suffer more from the hostile environment. This study contributes to our understanding of mechanisms of adult oligodendrogenesis and glial heterogeneity and further reveals critical factors when considering aNSC mediated cell replacement in injury and disease.


Assuntos
Substância Cinzenta/metabolismo , Células-Tronco Neurais/citologia , Oligodendroglia/metabolismo , Substância Branca/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Ratos
7.
Glia ; 67(8): 1510-1525, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31038798

RESUMO

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that leads to severe neurological deficits. Due to their immunomodulatory and neuroprotective activities and their ability to promote the generation of oligodendrocytes, mesenchymal stem cells (MSCs) are currently being developed for autologous cell therapy in MS. As aging reduces the regenerative capacity of all tissues, it is of relevance to investigate whether MSCs retain their pro-oligodendrogenic activity with increasing age. We demonstrate that MSCs derived from aged rats have a reduced capacity to induce oligodendrocyte differentiation of adult CNS stem/progenitor cells. Aging also abolished the ability of MSCs to enhance the generation of myelin-like sheaths in demyelinated cerebellar slice cultures. Finally, in a rat model for CNS demyelination, aging suppressed the capability of systemically transplanted MSCs to boost oligodendrocyte progenitor cell (OPC) differentiation during remyelination. Thus, aging restricts the ability of MSCs to support the generation of oligodendrocytes and consequently inhibits their capacity to enhance the generation of myelin-like sheaths. These findings may impact on the design of therapies using autologous MSCs in older MS patients.


Assuntos
Envelhecimento/fisiologia , Células-Tronco Mesenquimais/fisiologia , Oligodendroglia/fisiologia , Remielinização/fisiologia , Animais , Células Cultivadas , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Feminino , Masculino , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos
8.
Glia ; 66(1): 145-160, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28940767

RESUMO

The generation of new oligodendrocytes is essential for adult brain repair in diseases such as multiple sclerosis. We previously identified the multifunctional p57kip2 protein as a negative regulator of myelinating glial cell differentiation and as an intrinsic switch of glial fate decision in adult neural stem cells (aNSCs). In oligodendroglial precursor cells (OPCs), p57kip2 protein nuclear exclusion was recently found to be rate limiting for differentiation to proceed. Furthermore, stimulation with mesenchymal stem cell (MSC)-derived factors enhanced oligodendrogenesis by yet unknown mechanisms. To elucidate this instructive interaction, we investigated to what degree MSC secreted factors are species dependent, whether hippocampal aNSCs respond equally well to such stimuli, whether apart from oligodendroglial differentiation also tissue integration and axonal wrapping can be promoted and whether the oligodendrogenic effect involved subcellular translocation of p57kip2. We found that CC1 positive oligodendrocytes within the hilus express nuclear p57kip2 protein and that MSC dependent stimulation of cultured hippocampal aNSCs was not accompanied by nuclear p57kip2 exclusion as observed for parenchymal OPCs after spontaneous differentiation. Stimulation with human MSC factors was observed to equally promote rat stem cell oligodendrogenesis, axonal wrapping and tissue integration. As forced nuclear shuttling of p57kip2 led to decreased CNPase- but elevated GFAP expression levels, this indicates heterogenic oligodendroglial mechanisms occurring between OPCs and aNSCs. We also show for the first time that dominant pro-oligodendroglial factors derived from human fetal MSCs can instruct human induced pluripotent stem cell-derived NSCs to differentiate into O4 positive oligodendrocytes.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Hipocampo/citologia , Células-Tronco Neurais/química , Oligodendroglia/efeitos dos fármacos , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Animais Recém-Nascidos , Proteínas Relacionadas à Autofagia , Encéfalo/metabolismo , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Feminino , Feto , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Oligodendroglia/fisiologia , Ratos , Ratos Wistar
9.
Curr Opin Neurol ; 29(3): 205-12, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27035898

RESUMO

PURPOSE OF REVIEW: Following the establishment of a number of successful immunomodulatory treatments for multiple sclerosis, current research focuses on the repair of existing damage. RECENT FINDINGS: Promotion of regeneration is particularly important for demyelinated areas with degenerated or functionally impaired axons of the central nervous system's white and gray matter. As the protection and generation of new oligodendrocytes is a key to the re-establishment of functional connections, adult oligodendrogenesis and myelin reconstitution processes are of primary interest. Moreover, understanding, supporting and promoting endogenous repair activities such as mediated by resident oligodendroglial precursor or adult neural stem cells are currently thought to be a promising approach toward the development of novel regenerative therapies. SUMMARY: This review summarizes recent developments and findings related to pharmacological myelin repair as well as to the modulation/application of stem cells with the aim to restore defective myelin sheaths.


Assuntos
Doenças Desmielinizantes/terapia , Bainha de Mielina , Transplante de Células-Tronco , Animais , Doenças Desmielinizantes/patologia , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia
10.
PLoS One ; 8(8): e71814, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951248

RESUMO

Oligodendroglial progenitor/precursor cells (OPCs) represent the main cellular source for the generation of new myelinating oligodendrocytes in the adult central nervous system (CNS). In demyelinating diseases such as multiple sclerosis (MS) myelin repair activities based on recruitment, activation and differentiation of resident OPCs can be observed. However, the overall degree of successful remyelination is limited and the existence of an MS-derived anti-oligodendrogenic milieu prevents OPCs from contributing to myelin repair. It is therefore of considerable interest to understand oligodendroglial homeostasis and maturation processes in order to enable the development of remyelination therapies. Mesenchymal stem cells (MSC) have been shown to exert positive immunomodulatory effects, reduce demyelination, increase neuroprotection and to promote adult neural stem cell differentiation towards the oligodendroglial lineage. We here addressed whether MSC secreted factors can boost the OPC's oligodendrogenic capacity in a myelin non-permissive environment. To this end, we analyzed cellular morphologies, expression and regulation of key factors involved in oligodendroglial fate and maturation of primary rat cells upon incubation with MSC-conditioned medium. This demonstrated that MSC-derived soluble factors promote and accelerate oligodendroglial differentiation, even under astrocytic endorsing conditions. Accelerated maturation resulted in elevated levels of myelin expression, reduced glial fibrillary acidic protein expression and was accompanied by downregulation of prominent inhibitory differentiation factors such as Id2 and Id4. We thus conclude that apart from their suggested application as potential anti-inflammatory and immunomodulatory MS treatment, these cells might also be exploited to support endogenous myelin repair activities.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Cultura Primária de Células , Ratos
11.
Cell Tissue Res ; 349(1): 331-47, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22322424

RESUMO

Multiple sclerosis (MS) is an autoimmune disease that leads to oligodendrocyte loss and subsequent demyelination of the adult central nervous system (CNS). The pathology is characterized by transient phases of recovery during which remyelination can occur as a result of resident oligodendroglial precursor and stem/progenitor cell activation. However, myelin repair efficiency remains low urging the development of new therapeutical approaches that promote remyelination activities. Current MS treatments target primarily the immune system in order to reduce the relapse rate and the formation of inflammatory lesions, whereas no therapies exist in order to regenerate damaged myelin sheaths. During the last few years, several transplantation studies have been conducted with adult neural stem/progenitor cells and glial precursor cells to evaluate their potential to generate mature oligodendrocytes that can remyelinate axons. In parallel, modulation of the endogenous progenitor niche by neural and mesenchymal stem cell transplantation with the aim of promoting CNS progenitor differentiation and myelination has been studied. Here, we summarize these findings and discuss the properties and consequences of the various molecular and cell-mediated remyelination approaches. Moreover, we address age-associated intrinsic cellular changes that might influence the regenerative outcome. We also evaluate the extent to which these experimental treatments might increase the regeneration capacity of the demyelinated human CNS and hence be turned into future therapies.


Assuntos
Esclerose Múltipla/terapia , Bainha de Mielina/patologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Humanos , Modelos Biológicos , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Células-Tronco/metabolismo , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA