Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374239

RESUMO

Oxidative damage has been identified as a major causative factor in degenerative diseases of the retina; retinal pigment epithelial (RPE) cells are at high risk. Hence, identifying novel strategies for increasing the antioxidant capacity of RPE cells, the purpose of this study, is important. Specifically, we evaluated the influence of selenium in the form of selenomethionine (Se-Met) in cultured RPE cells on system xc- expression and functional activity and on cellular levels of glutathione, a major cellular antioxidant. ARPE-19 and mouse RPE cells were cultured with and without selenomethionine (Se-Met), the principal form of selenium in the diet. Promoter activity assay, uptake assay, RT-PCR, northern and western blots, and immunofluorescence were used to analyze the expression of xc-, Nrf2, and its target genes. Se-Met activated Nrf2 and induced the expression and function of xc- in RPE. Other target genes of Nrf2 were also induced. System xc- consists of two subunits, and Se-Met induced the subunit responsible for transport activity (SLC7A11). Selenocysteine also induced xc- but with less potency. The effect of Se-met on xc- was associated with an increase in maximal velocity and an increase in substrate affinity. Se-Met increased the cellular levels of glutathione in the control, an oxidatively stressed RPE. The Se-Met effect was selective; under identical conditions, taurine transport was not affected and Na+-coupled glutamate transport was inhibited. This study demonstrates that Se-Met enhances the antioxidant capacity of RPE by inducing the transporter xc- with a consequent increase in glutathione.

2.
Int J Mol Sci ; 21(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751103

RESUMO

Retinal ischemia contributes to visual impairment in ischemic retinopathies. A disintegrin and metalloproteinase ADAM17 is implicated in multiple vascular pathologies through its ability to regulate inflammatory signaling via ectodomain shedding. We investigated the role of endothelial ADAM17 in neuronal and vascular degeneration associated with retinal ischemia reperfusion (IR) injury using mice with conditional inactivation of ADAM17 in vascular endothelium. ADAM17Cre-flox and control ADAM17flox mice were subjected to 40 min of pressure-induced retinal ischemia, with the contralateral eye serving as control. Albumin extravasation and retinal leukostasis were evaluated 48 h after reperfusion. Retinal morphometric analysis was conducted 7 days after reperfusion. Degenerate capillaries were assessed by elastase digest and visual function was evaluated by optokinetic test 14 and 7 days following ischemia, respectively. Lack of ADAM17 decreased vascular leakage and reduced retinal thinning and ganglion cell loss in ADAM17Cre-flox mice. Further, ADAM17Cre-flox mice exhibited a remarkable reduction in capillary degeneration following IR. Decrease in neurovascular degeneration in ADAM17Cre-flox mice correlated with decreased activation of caspase-3 and was associated with reduction in oxidative stress and retinal leukostasis. In addition, knockdown of ADAM17 resulted in decreased cleavage of p75NTR, the process known to be associated with retinal cell apoptosis. A decline in visual acuity evidenced by decrease in spatial frequency threshold observed in ADAM17flox mice was partially restored in ADAM17-endothelial deficient mice. The obtained results provide evidence that endothelial ADAM17 is an important contributor to IR-induced neurovascular damage in the retina and suggest that interventions directed at regulating ADAM17 activity can be beneficial for alleviating the consequences of retinal ischemia.


Assuntos
Proteína ADAM17/genética , Leucostasia/genética , Traumatismo por Reperfusão/genética , Degeneração Retiniana/genética , Células Ganglionares da Retina/metabolismo , Proteína ADAM17/deficiência , Albuminas/metabolismo , Animais , Apoptose/genética , Permeabilidade Capilar , Caspase 3/genética , Caspase 3/metabolismo , Adesão Celular , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Leucócitos/metabolismo , Leucócitos/patologia , Leucostasia/metabolismo , Leucostasia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Ganglionares da Retina/patologia
3.
Redox Biol ; 28: 101314, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514051

RESUMO

Nuclear factor-erythroid 2 related factor 2 (Nrf2)-mediated signaling plays a central role in maintaining cellular redox homeostasis of hepatic cells. Carbon monoxide releasing molecule-A1 (CORM-A1) has been reported to stimulate up-regulation and nuclear translocation of Nrf2 in hepatocytes. However, the role of CORM-A1 in improving lipid metabolism, antioxidant signaling and mitochondrial functions in nonalcoholic steatohepatitis (NASH) is unknown. In this study, we report that CORM-A1 prevents hepatic steatosis in high fat high fructose (HFHF) diet fed C57BL/6J mice, used as model of NASH. The beneficial effects of CORM-A1 in HFHF fed mice was associated with improved lipid homeostasis, Nrf2 activation, upregulation of antioxidant responsive (ARE) genes and increased ATP production. As, mitochondria are intracellular source of reactive oxygen species (ROS) and important sites of lipid metabolism, we further investigated the mechanisms of action of CORM-A1-mediated improvement in mitochondrial function in palmitic acid (PA) treated HepG2 cells. Cellular oxidative stress and cell viability were found to be improved in PA + CORM-A1 treated cells via Nrf2 translocation and activation of cytoprotective genes. Furthermore, in PA treated cells, CORM-A1 improved mitochondrial oxidative stress, membrane potential and rescued mitochondrial biogenesis thru upregulation of Drp1, TFAM, PGC-1α and NRF-1 genes. CORM-A1 treatment improved cellular status by lowering glycolytic respiration and maximizing OCR. Improvement in mitochondrial respiration and increment in ATP production in PA + CORM-A1 treated cells further corroborate our findings. In summary, our data demonstrate for the first time that CORM-A1 ameliorates tissue damage in steatotic liver via Nrf2 activation and improved mitochondrial function, thus, suggesting the anti-NASH potential of CORM-A1.


Assuntos
Boranos/administração & dosagem , Carbonatos/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Xarope de Milho Rico em Frutose/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Boranos/farmacologia , Carbonatos/farmacologia , Sobrevivência Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/farmacologia , Transdução de Sinais/efeitos dos fármacos
4.
Biochem Pharmacol ; 169: 113613, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31445019

RESUMO

Previously, we reported that hepatic muscarinic receptors modulate both acute and chronic liver injury, however, the role of muscarinic receptors in fatty liver disease is unclear. We observed in patients who underwent weight loss surgery, a decrease in hepatic expression of M3 muscarinic receptors (M3R). We also observed that fat loading of hepatocytes, increased M3R expression. Based on these observations, we tested the hypothesis that M3R regulate hepatocyte lipid accumulation. Incubation of AML12 hepatocytes with 1 mM oleic acid resulted in lipid accumulation that was significantly reduced by co-treatment with a muscarinic agonist (pilocarpine or carbachol), an effect blocked by atropine (a muscarinic antagonist). Similar treatment of Hepa 1-6 cells, a mouse hepatoblastoma cell line, showed comparable results. In both, control and fat-loaded AML12 cells, pilocarpine induced time-dependent AMPKα phosphorylation and significantly up-regulated lipolytic genes (ACOX1, CPT1, and PPARα). Compound C, a selective and reversible AMPK inhibitor, significantly blunted pilocarpine-mediated reduction of lipid accumulation and pilocarpine-mediated up-regulation of lipolytic genes. BAPTA-AM, a calcium chelator, and STO-609, a calcium/calmodulin-dependent protein kinase kinase inhibitor, attenuated agonist-induced AMPKα phosphorylation. Finally, M3R siRNA attenuated agonist-induced AMPKα phosphorylation as well as agonist-mediated reduction of hepatocyte steatosis. In conclusion, this proof-of-concept study demonstrates that M3R has protective effects against hepatocyte lipid accumulation by activating AMPK pathway and is a potential therapeutic target for non-alcoholic fatty liver disease.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/fisiologia , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Receptor Muscarínico M3/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , PPAR alfa/fisiologia , Fosforilação , Receptor Muscarínico M1/fisiologia , Transdução de Sinais/fisiologia
6.
Biomed Res Int ; 2019: 8748253, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080832

RESUMO

Aging is related to a number of functional and morphological changes leading to progressive decline of the biological functions of an organism. Reactive Oxygen Species (ROS), released by several endogenous and exogenous processes, may cause important oxidative damage to DNA, proteins, and lipids, leading to important cellular dysfunctions. The imbalance between ROS production and antioxidant defenses brings to oxidative stress conditions and, related to accumulation of ROS, aging-associated diseases. The purpose of this review is to provide an overview of the most relevant data reported in literature on the natural compounds, mainly phytochemicals, with antioxidant activity and their potential protective effects on age-related diseases such as metabolic syndrome, diabetes, cardiovascular disease, cancer, neurodegenerative disease, and chronic inflammation, and possibly lower side effects, when compared to other drugs.


Assuntos
Envelhecimento/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Envelhecimento/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Humanos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Toxicol Appl Pharmacol ; 360: 99-108, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30273691

RESUMO

Acute liver injury is frequently associated with oxidative stress. Here, we investigated the therapeutic potential of carbon monoxide releasing molecule A-1 (CORM A-1) in oxidative stress-mediated liver injury. Overnight-fasted mice were injected with acetaminophen (APAP; 300 mg/kg; intraperitoneally) and were sacrificed at 4 and 12 h. They showed elevated levels of serum transaminases, depleted hepatic glutathione (GSH) and hepatocyte necrosis. Mice injected with CORM A-1 (20 mg/kg) 1 h after APAP administration, had reduced serum transaminases, preserved hepatic GSH and reduced hepatocyte necrosis. Mice that received a lethal dose of APAP (600 mg/kg), died by 10 h; but those co-treated with CORM A-1 showed a 50% survival. Compared to APAP-treated mice, livers from those co-treated with CORM A-1, had upregulation of Nrf2 and ARE genes (HO-1, GCLM and NQO-1). APAP-treated mice had elevated hepatic mRNA levels of inflammatory genes (Nf-κB, TNF-α, IL1-ß and IL-6), an effect blunted in those co-treated with CORM A-1. In tert-butyl hydroperoxide (t-BHP)-treated HepG2 cells, CORM A-1 augmented cell viability, reduced oxidative stress, activated the nuclear factor erythroid 2-related factor 2 (Nrf2) and anti-oxidant response element (ARE) genes. The molecular docking profile of CO in the kelch domain of Keap1 protein suggested that CO released from CORM A-1 mediated Nrf2 activation. Collectively, these data indicate that CORM A-1 reduces oxidative stress by upregulating Nrf2 and related genes, and restoring hepatic GSH, to reduce hepatocyte necrosis and thus minimize liver injury that contributes to an overall improved survival rate.


Assuntos
Acetaminofen/efeitos adversos , Monóxido de Carbono/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Elementos de Resposta Antioxidante/efeitos dos fármacos , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Células Hep G2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Testes de Função Hepática/métodos , Masculino , Camundongos , Simulação de Acoplamento Molecular/métodos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
8.
Aging (Albany NY) ; 10(6): 1306-1323, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29905535

RESUMO

Retinal pigment epithelium (RPE) performs numerous functions critical to retinal health and visual function. RPE senescence is a hallmark of aging and degenerative retinal disease development. Here, we evaluated the temporal expression of key nicotinamide adenine dinucleotide (NAD+)-biosynthetic genes and associated levels of NAD+, a principal regulator of energy metabolism and cellular fate, in mouse RPE. NAD+ levels declined with age and correlated directly with decreased nicotinamide phosphoribosyltransferase (NAMPT) expression, increased expression of senescence markers (p16INK4a, p21Waf/Cip1, ApoJ, CTGF and ß-galactosidase) and significant reductions in SIRT1 expression and activity. We simulated in vitro the age-dependent decline in NAD+ and the related increase in RPE senescence in human (ARPE-19) and mouse primary RPE using the NAMPT inhibitor FK866 and demonstrated the positive impact of NAD+-enhancing therapies on RPE cell viability. This, we confirmed in vivo in the RPE of mice injected sub-retinally with FK866 in the presence or absence of nicotinamide mononucleotide. Our data confirm the importance of NAD+ to RPE cell biology normally and in aging and demonstrate the potential utility of therapies targeting NAMPT and NAD+ biosynthesis to prevent or alleviate consequences of RPE senescence in aging and/or degenerative retinal diseases in which RPE dysfunction is a crucial element.


Assuntos
Envelhecimento/fisiologia , Citocinas/metabolismo , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Epitélio Pigmentado da Retina , Acrilamidas/farmacologia , Animais , Células Cultivadas , Células Epiteliais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Mononucleotídeo de Nicotinamida/farmacologia , Piperidinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Sci Rep ; 7(1): 2029, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28515465

RESUMO

The pathogenesis of osteoarthritis (OA) is poorly understood, and therapeutic approaches are limited to preventing progression of the disease. Recent studies have shown that exosomes play a vital role in cell-to-cell communication, and pathogenesis of many age-related diseases. Molecular profiling of synovial fluid derived exosomal miRNAs may increase our understanding of OA progression and may lead to the discovery of novel biomarkers and therapeutic targets. In this article we report the first characterization of exosomes miRNAs from human synovial fluid. The synovial fluid exosomes share similar characteristics (size, surface marker, miRNA content) with previously described exosomes in other body fluids. MiRNA microarray analysis showed OA specific exosomal miRNA of male and female OA. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified gender-specific target genes/signaling pathways. These pathway analyses showed that female OA specific miRNAs are estrogen responsive and target TLR (toll-like receptor) signaling pathways. Furthermore, articular chondrocytes treated with OA derived extracellular vesicles had decreased expression of anabolic genes and elevated expression of catabolic and inflammatory genes. In conclusion, synovial fluid exosomal miRNA content is altered in patients with OA and these changes are gender specific.


Assuntos
Exossomos/metabolismo , Expressão Gênica , MicroRNAs/genética , Osteoartrite/genética , Osteoartrite/metabolismo , Líquido Sinovial/metabolismo , Sobrevivência Celular , Condrócitos/metabolismo , Biologia Computacional/métodos , Endocitose , Estrogênios/metabolismo , Exossomos/ultraestrutura , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Anotação de Sequência Molecular , Transdução de Sinais , Transcriptoma
10.
Biochem Pharmacol ; 97(1): 122-32, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26212553

RESUMO

Withaferin-A (WA) has anti-oxidant activities however, its therapeutic potential in acetaminophen (APAP) hepatotoxicity is unknown. We performed a proof-of-concept study to assess the therapeutic potential of WA in a mouse model that mimics APAP-induced liver injury (AILI) in humans. Overnight fasted C57BL/6NTac (5-6 wk. old) male mice received 200 mg/kg APAP intraperitoneally (i.p.). After 1 h mice were treated with 40 mg/kg WA or vehicle i.p., and euthanized 4 and 16 h later; their livers were harvested and serum collected for analysis. At 4 h, compared to vehicle-treated mice, WA-treated mice had reduced serum ALT levels, hepatocyte necrosis and intrahepatic hemorrhage. All APAP-treated mice had reduced hepatic glutathione (GSH) levels however, reduction in GSH was lower in WA-treated when compared to vehicle-treated mice. Compared to vehicle-treated mice, livers from WA-treated mice had reduced APAP-induced JNK activation, mitochondrial Bax translocation, and nitrotyrosine generation. Compared to vehicle-treated mice, WA-treated mice had increased hepatic up-regulation of Nrf2, Gclc and Nqo1, and down-regulation of Il-6 and Il-1ß. The hepatoprotective effect of WA persisted at 16 h. Compared to vehicle-treated mice, WA-treated mice had reduced hepatocyte necrosis and hepatic expression of Il-6, Tnf-α and Il-1ß, increased hepatic Gclc and Nqo1 expression and GSH levels, and reduced lipid peroxidation. Finally, in AML12 hepatocytes, WA reduced H2O2-induced oxidative stress and necrosis by preventing GSH depletion. Collectively, these data show mechanisms whereby WA reduces necrotic hepatocyte injury, and demonstrate that WA has therapeutic potential in AILI.


Assuntos
Acetaminofen/antagonistas & inibidores , Analgésicos não Narcóticos/intoxicação , Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Vitanolídeos/uso terapêutico , Acetaminofen/administração & dosagem , Acetaminofen/intoxicação , Analgésicos não Narcóticos/administração & dosagem , Analgésicos não Narcóticos/química , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Cruzamentos Genéticos , Glutationa/agonistas , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Hemorragia/etiologia , Hemorragia/prevenção & controle , Mediadores da Inflamação/agonistas , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/sangue , Mediadores da Inflamação/metabolismo , Injeções Intraperitoneais , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Necrose/etiologia , Necrose/prevenção & controle , Distribuição Aleatória , Organismos Livres de Patógenos Específicos , Vitanolídeos/administração & dosagem , Vitanolídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA