Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(5): e0215291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150404

RESUMO

Among neurodegenerative diseases, Alzheimer's disease (AD) is one of the most grievous disease. The oldest cholinergic hypothesis is used to elevate the level of cognitive impairment and acetylcholinesterase (AChE) comprises the major targeted enzyme in AD. Thus, acetylcholinesterase inhibitors (AChEI) constitutes the essential remedy for the treatment of AD. The study aims to evaluate the interactions between natural molecules and AChE by Surface Plasmon Resonance (SPR). The molecules like alkaloids, polyphenols and substrates of AChE have been considered for the study with a major emphasis on affinity and kinetics. To better understand the activity of small molecules, the investigation is supported by both experimental and theoretical approach such as fluorescence, Circular Dichroism (CD) and molecular docking studies. Amongst the screened ones tannic acid showed promising results compared with others. The methodology followed here have highlighted many molecules with a higher affinity towards AChE and these findings may take lead molecules generated in preclinical studies to treat neurodegenerative diseases. Additionally, we suggest a unique signature for the heterogeneous analyte model using competitive experiments for analyzing simultanous interactions of both the analytes.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Taninos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Inibidores da Colinesterase/química , Dicroísmo Circular , Avaliação Pré-Clínica de Medicamentos , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Taninos/química
2.
J Hazard Mater ; 374: 66-73, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30978632

RESUMO

Intensive use of atrazine in agriculture to increase crop productivity has resulted in pollution and consequently deteriorated the environment. Three isolated bacteria, Rhodococcus sp. BCH2 (RB), Bacillus sp. PDK1 (BP1) and Bacillus sp. PDK2 (BP2) possessing capability to degrade atrazine were used in different combinations (RB + BP1, RB + BP2, BP1 + BP2, RB + BP1 + BP2) to prepare a highly effective bacterial consortium which can significantly reduce the toxicity of atrazine. Cytotoxicity tests evaluated by MTT assay on HepG2 indicated significant decrease in the toxicity of atrazine by the consortium RB + BP1 + BP2 due to its effective degradation and formation of simpler and less/nontoxic metabolites compared to other combinations of consortia. A microcosm study was conducted to check the survivability of this consortium (RB + BP1 + BP2) in the presence of atrazine and indigenous soil microflora for four weeks. LC-Q-TOF/MS analysis revealed that RB + BP1 + BP2 could degrade atrazine to various simple metabolites in the microcosm. The cluster analysis of the DGGE patterns of the microcosm of control-soil, soil exposed to atrazine and soil augmented with consortium in the presence of atrazine (1000 mg kg-1) revealed a shift in microbial community of soil. The microbial dynamics studies suggested that the augmented bacteria were well-thrived with natural microflora during four weeks of exposure to atrazine.


Assuntos
Atrazina/metabolismo , Atrazina/toxicidade , Biodegradação Ambiental , Agricultura , Bacillus/metabolismo , Análise por Conglomerados , Células Hep G2 , Herbicidas/metabolismo , Herbicidas/toxicidade , Humanos , Microbiota , Filogenia , Rhodococcus/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
3.
J Am Coll Nutr ; 38(4): 364-372, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30589617

RESUMO

OBJECTIVE: This investigation was undertaken to optimize the effective extraction of total phenolics content (TPC), total flavonoids content (TFC), and antioxidant activity from the Mucuna macrocarpa (MM) beans. An ultrasound-assisted extraction (UAE) technique with water as an effective solvent was proposed for the response surface methodology (RSM) optimization. METHODS: A three-level, two-factor central composite design (CCD) was employed to reveal the optimal points of variables. Different extraction times (5, 10, 15 minutes) and ultrasonic power levels (10, 20, 30 W) were used for the optimization. The experimental runs given by the RSM were evaluated for TPC, TFC, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (RSA), and N,N-dimethyl-p-phenylenediamine (DMPD) RSA and ferric reducing antioxidant power (FRAP). RESULTS: The predicted times for maximum extraction of TPC (186.61 mg GAE g-1), TFC (148.87 mg QUE g-1), and DPPH RSA (99.37%), and DMPD RSA (50.58%) and FRAP (2.38 O.D. at 593 nm) were 12.57, 12.84, 12.43, 12.97, and 13.24 min, and ultrasonic power levels were found to be 27.30, 26.76, 26.22, 27.03, and 27.84 W, respectively. Reverse-phase high-performance liquid chromatography (RP-HPLC) analysis of phenolics compounds from the RSM optimized sample showed tannic acid (48.09 ± 1.92 mg/g), gallic acid (1.17 ± 0.19 mg/g), p-coumaric acid (0.56 ± 0.03 mg/g), and p-hydroxybenzoic acid (0.049 ± 0.01 mg/g) content. CONCLUSION: Water and ultrasonication were found to be an effective extraction solvent and technique. RSM was effectively employed to investigate the optimal process conditions for the maximum extraction of TPC, TFC, and antioxidant compounds from the MM beans. Further, MM beans can be explored as a prominent antioxidant source for the treatment of several disorders.


Assuntos
Flavonoides/química , Mucuna/química , Fenóis/química , Extratos Vegetais/química , Sementes/química , Ultrassom , Antioxidantes , Água
4.
Ecotoxicol Environ Saf ; 161: 70-77, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859410

RESUMO

This study explores the potential of Asparagus densiflorus to treat disperse Rubin GFL (RGFL) dye and a real textile effluent in constructed vertical subsurface flow (VSbF) phytoreactor; its field cultivation for soil remediation offers a real green and economic way of environmental management. A. densiflorus decolorized RGFL (40 gm L-1) up to 91% within 48 h. VSbF phytoreactor successfully reduced American dye manufacture institute (ADMI), BOD, COD, Total Dissolved Solids (TDS) and Total Suspended Solids (TSS) of real textile effluent by 65%, 61%, 66%, 48% and 66%, respectively within 6 d. Oxidoreductive enzymes such as laccase (138%), lignin peroxidase (129%), riboflavin reductase (111%) were significantly expressed during RGFL degradation in A. densiflorus roots, while effluent transformation caused noteworthy induction of enzymes like, tyrosinase (205%), laccase (178%), veratryl oxidase (52%). Based on enzyme activities, UV-vis spectroscopy, FTIR and GC-MS results; RGFL was proposed to be transformed to 4-amino-3- methylphenyl (hydroxy) oxoammonium and N, N-diethyl aniline. Anatomical study of the advanced root tissue of A. densiflorus exhibited the progressive dye accumulation and removal during phytoremediation. HepG2 cell line and phytotoxicity study demonstrated reduced toxicity of biotransformed RGFL and treated effluent by A. densiflorus, respectively. On field remediation study revealed a noteworthy removal (67%) from polluted soil within 30 d.


Assuntos
Asparagus/enzimologia , Compostos Azo/metabolismo , Corantes/metabolismo , Recuperação e Remediação Ambiental/métodos , Nitrilas/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Têxteis , Compostos de Amônio/metabolismo , Compostos de Anilina/metabolismo , Biodegradação Ambiental , Corantes/toxicidade , Produtos Agrícolas/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Células Hep G2 , Humanos , Resíduos Industriais , Lacase , Oxirredutases/metabolismo , Peroxidases , Raízes de Plantas/enzimologia , Indústria Têxtil , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo
5.
Front Aging Neurosci ; 9: 421, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311905

RESUMO

Till date, drugs that have been used to manage Parkinson's disease (PD) have only shown symptomatic relief with several adverse effects besides their inability to prevent neurodegeneration. Neuroinflammation plays an important role in the advancement of PD and can be targeted for its effective treatment. Researchers have suggested that herbal plants exhibiting the anti-inflammatory and anti-oxidant properties are therefore beneficial to human health. Conventionally, Mucuna pruriens (Mp) seeds are used for maintaining male virility in India. Reportedly, Mp is used as a rejuvenator drug having neuroprotective property. Our study aimed to investigate effects of aqueous extract of Mp (100 mg/kgbwt) on neuroinflammation, orally administered to mice intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as the molecular mechanism involved in the progression of PD. In this study, we have observed significant behavioral abnormalities beside decreased antioxidant defense in MPTP intoxicated mice. We have also observed significant increase in inflammatory parameters like Glial Fibrillary Acidic Protein, Inducible Nitric Oxide Synthase, Intercellular Cell Adhesion Molecule, and Tumor Necrosis Factor alpha in substantia nigra pars compacta (SNpc) of parkinsonian mice, while Mp treatment has notably reduced these inflammatory parameters. Mp also inhibited the MPTP induced activation of NF-κB and promoted pAkt1 activity which further prevented the apoptosis of the dopaminergic neurons. Moreover, Mp exhibited significant antioxidant defense by inhibiting the lipid peroxidation and nitrite level, and by improving catalase activity and enhancing GSH level in nigrostriatal region of mouse brain. Mp also recovered the behavioral abnormalities in MPTP treated mice. Additionally, Mp treatment considerably increased the immunoreactivity of Tyrosine Hydroxylase and Dopamine Transporter in SNpc of parkinsonian mice. Our high performance liquid chromatography analysis of the Mp seed extract have shown L-DOPA, gallic acid, phytic acid, quercetin, and catechin equivalents as the major components which might cause neuroprotection in PD mice. Our result suggested that Mp extract treatment containing L-DOPA and a mixture of rich novel phytochemicals significantly alleviates the MPTP induced neurotoxicity by NF-κB and pAkt pathway. The findings observed thereby indicate that Mp extract have suggestively ameliorated MPTP induced neuroinflammation, restored the biochemical and behavioral abnormalities in PD mouse and thus provided a scientific basis for its traditional claim.

6.
J Hazard Mater ; 191(1-3): 150-7, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21550720

RESUMO

Phytoremediation is considered as an effective viable alternative to remediate the contaminated sites, industrially hazardous chemicals and other toxic pollutants. This bioremediation option offers a safe, cheap and eco friendly alternative to existing physical and chemical remediation technologies as well as other biological sources. The wall paint preservatives consist of several harmful and carcinogenic compounds causing serious environmental concerns. In the present study, an actively growing Blumea malcolmii Hook cell suspensions were established successfully on MS+CM (20%) +2,4-D (5 mg l(-1))+Gln (100 mg l(-1))+sucrose (3%) and were used to detoxify a paint preservative Troysan S 89 (a mixture of carbendazim, diuron and ochthilinone). FTIR and UV spectral analytical studies revealed the phytotransformation of Troysan S 89 by Blumea cell suspension cultures. The non-toxic nature of the products formed after phytotransformation was confirmed by phytotoxicity, cytogenotoxicity while non-carcinogenic nature by Ames tests. The novelty of the present study is effective communal degradation of a mixture of three toxicants in Troysan S 89 by cell suspension cultures of Blumea. This work suggested that Blumea cell suspensions might be able to contribute to the wider and safer application of phytoremediation.


Assuntos
Carcinógenos/metabolismo , Recuperação e Remediação Ambiental/métodos , Pintura , Plantas/metabolismo , Biotransformação , Testes de Carcinogenicidade , Carcinógenos/toxicidade , Células Cultivadas , Testes de Mutagenicidade , Células Vegetais , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
7.
J Hazard Mater ; 186(1): 713-23, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21144656

RESUMO

The present study aims to evaluate Red HE3B degrading potential of developed microbial consortium SDS using two bacterial cultures viz. Providencia sp. SDS (PS) and Pseudomonas aeuroginosa strain BCH (PA) originally isolated from dye contaminated soil. Consortium was found to be much faster for decolorization and degradation of Red HE3B compared to the individual bacterial strain. The intensive metabolic activity of these strains led to 100% decolorization of Red HE3B (50 mg l(-1)) with in 1h. Significant induction of various dye decolorizing enzymes viz. veratryl alcohol oxidase, laccase, azoreductase and DCIP reductase compared to control, point out towards their involvement in overall decolorization and degradation process. Analytical studies like HPLC, FTIR and GC-MS were used to scrutinize the biodegradation process. Toxicological studies before and after microbial treatment was studied with respect to cytotoxicity, genotoxicity, oxidative stress, antioxidant enzyme status, protein oxidation and lipid peroxidation analysis using root cells of Allium cepa. Toxicity analysis with A. cepa signifies that dye Red HE3B exerts oxidative stress and subsequently toxic effect on the root cells where as biodegradation metabolites of the dye are relatively less toxic in nature. Phytotoxicity studies also indicated that microbial treatment favors detoxification of Red HE3B.


Assuntos
Corantes/química , Estresse Oxidativo , Providencia/metabolismo , Têxteis , Sequência de Bases , Testes de Carcinogenicidade , Cromatografia Líquida de Alta Pressão , Corantes/toxicidade , Meios de Cultura , Primers do DNA , Cromatografia Gasosa-Espectrometria de Massas , Testes de Mutagenicidade , Filogenia , Reação em Cadeia da Polimerase , Providencia/classificação , Providencia/genética , RNA Ribossômico 16S/genética , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA