Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reprod Med Biol ; 23(1): e12606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263384

RESUMO

Purpose: This study aimed to evaluate the protective effects of edible bird nest (EBN) against the detrimental impact of Wi-Fi on male reproductive health. Specifically, it examines whether EBN can mitigate Wi-Fi-induced changes in male reproductive hormones, estrogen receptors (ER), spermatogenesis, and sperm parameters. Methods: Thirty-six adult male rats were divided into six groups (n = 6): Control, Control EBN, Control E2, Wi-Fi, Wi-Fi+EBN, and Wi-Fi+E2. Control EBN and Wi-Fi+EBN groups received 250 mg/kg/day EBN, while Control E2 and Wi-Fi+E2 groups received 12 µg/kg/day E2 for 10 days. Wi-Fi exposure and EBN supplementation lasted eight weeks. Assessments included organ weight, hormone levels (FSH, LH, testosterone, and E2), ERα/ERß mRNA and protein expression, spermatogenic markers (c-KIT and SCF), and sperm quality. Results: Wi-Fi exposure led to decreased FSH, testosterone, ERα mRNA, and sperm quality (concentration, motility, and viability). EBN supplementation restored serum FSH and testosterone levels, increased serum LH levels, and the testosterone/E2 ratio, and normalized mRNA ERα expression. Additionally, EBN increased sperm concentration in Wi-Fi-exposed rats without affecting motility or viability. Conclusions: EBN plays a crucial role in regulating male reproductive hormones and spermatogenesis, leading to improved sperm concentration. This could notably benefit men experiencing oligospermia due to excessive Wi-Fi exposure.

2.
Front Physiol ; 12: 732420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630149

RESUMO

Exposure to radiofrequency electromagnetic radiation (RF-EMR) from various wireless devices has increased dramatically with the advancement of technology. One of the most vulnerable organs to the RF-EMR is the testes. This is due to the fact that testicular tissues are more susceptible to oxidative stress due to a high rate of cell division and mitochondrial oxygen consumption. As a result of extensive cell proliferation, replication errors occur, resulting in DNA fragmentation in the sperm. While high oxygen consumption increases the level of oxidative phosphorylation by-products (free radicals) in the mitochondria. Furthermore, due to its inability to effectively dissipate excess heat, testes are also susceptible to thermal effects from RF-EMR exposure. As a result, people are concerned about its impact on male reproductive function. The aim of this article was to conduct a review of literature on the effects of RF-EMR emitted by wireless devices on male reproductive hormones in experimental animals and humans. According to the findings of the studies, RF-EMR emitted by mobile phones and Wi-Fi devices can cause testosterone reduction. However, the effect on gonadotrophic hormones (follicle-stimulating hormone and luteinizing hormone) is inconclusive. These findings were influenced by several factors, which can influence energy absorption and the biological effect of RF-EMR. The effect of RF-EMR in the majority of animal and human studies appeared to be related to the duration of mobile phone use. Thus, limiting the use of wireless devices is recommended.

3.
Molecules ; 26(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513715

RESUMO

Phytochemical contents of honey are presumed to be beneficial to the female reproductive system (FRS). However, the biological effects of honey supplementation (HS) in vivo on the FRS remain unclear. This review aims to investigate the current literature on the effects of HS on the FRS, particularly on the sex hormone profile and reproductive organs (uterus and vagina). A systematic literature search using Scopus, MEDLINE via Ovid and Cochrane Library databases was conducted. Records were screened and identified for preclinical and clinical studies addressing the effects of HS on the FRS. Data on populations, interventions, outcomes and methodological quality were extracted. Studies were synthesised using tables and written summaries. Of the 198 identified records, six fulfilled the inclusion criteria. All six records were used for data extraction: two experimental studies using rats as the model organism and four human clinical studies of honey on female reproductive health. HS elevated the progesterone levels, restrained body weight increase, prevented uterine and vaginal atrophies in ovariectomised rats, attenuated symptoms of candidiasis and improved oxidative status in patients. Current evidence shows that short-term HS following surgical or physiological menopause exerts an oestrogenic, antioxidant and anti-inflammatory effect on the FRS. However, insufficient long-term studies preclude any definitive conclusions.


Assuntos
Produtos Biológicos/farmacologia , Genitália Feminina/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Suplementos Nutricionais , Feminino , Genitália Feminina/metabolismo , Mel , Humanos , Progesterona/metabolismo , Útero/efeitos dos fármacos , Útero/metabolismo
4.
Tohoku J Exp Med ; 248(3): 169-179, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31353326

RESUMO

Extensive use of Wi-Fi has contributed to radiofrequency electromagnetic radiation (RF-EMR) pollution in environment. Various studies have been conducted to evaluate the effect of RF-EMR emitted by Wi-Fi transmitter on male reproduction health. However, there are conflicting findings between studies. Thus, this review aims to elucidate the possible effects of 2.45 GHz Wi-Fi exposure on both animal and human male reproductive system. A computerized database search performed through MEDLINE via Ovid and PUBMED with the following set of keywords: 'Wi-Fi or WiFi or wireless fidelity or Wi-Fi router or WiFi router or electromagnetic or radiofrequency radiation' AND 'sperm or spermatozoa or spermatogenesis or semen or seminal plasma or testes or testis or testosterone or male reproduction' had returned 526 articles. Only 17 studies conformed to pre-set inclusion criterion. Additional records identified through Google Scholar and reviewed article further revealed six eligible articles. A total of 23 articles were used for data extraction, including 15 studies on rats, three studies on mice, and five studies on human health. Sperm count, motility and DNA integrity were the most affected parameters when exposed to RF-EMR emitted by Wi-Fi transmitter. Unfortunately, sperm viability and morphology were inconclusive. Structural and/or physiological analyses of the testes showed degenerative changes, reduced testosterone level, increased apoptotic cells, and DNA damage. These effects were mainly due to the elevation of testicular temperature and oxidative stress activity. In conclusion, exposure towards 2.45 GHz RF-EMR emitted by Wi-Fi transmitter is hazardous on the male reproductive system.


Assuntos
Radiação Eletromagnética , Genitália Masculina/efeitos da radiação , Animais , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA