Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Med Inform Assoc ; 19(2): 166-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22101971

RESUMO

The National Center for Integrative and Biomedical Informatics (NCIBI) is one of the eight NCBCs. NCIBI supports information access and data analysis for biomedical researchers, enabling them to build computational and knowledge models of biological systems to address the Driving Biological Problems (DBPs). The NCIBI DBPs have included prostate cancer progression, organ-specific complications of type 1 and 2 diabetes, bipolar disorder, and metabolic analysis of obesity syndrome. Collaborating with these and other partners, NCIBI has developed a series of software tools for exploratory analysis, concept visualization, and literature searches, as well as core database and web services resources. Many of our training and outreach initiatives have been in collaboration with the Research Centers at Minority Institutions (RCMI), integrating NCIBI and RCMI faculty and students, culminating each year in an annual workshop. Our future directions include focusing on the TranSMART data sharing and analysis initiative.


Assuntos
Pesquisa Biomédica , Disseminação de Informação , Medicina Integrativa , Informática Médica , Bases de Dados como Assunto , Previsões , Objetivos , National Institutes of Health (U.S.) , Estados Unidos
2.
Bioinformatics ; 28(3): 373-80, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22135418

RESUMO

MOTIVATION: Metabolomics is a rapidly evolving field that holds promise to provide insights into genotype-phenotype relationships in cancers, diabetes and other complex diseases. One of the major informatics challenges is providing tools that link metabolite data with other types of high-throughput molecular data (e.g. transcriptomics, proteomics), and incorporate prior knowledge of pathways and molecular interactions. RESULTS: We describe a new, substantially redesigned version of our tool Metscape that allows users to enter experimental data for metabolites, genes and pathways and display them in the context of relevant metabolic networks. Metscape 2 uses an internal relational database that integrates data from KEGG and EHMN databases. The new version of the tool allows users to identify enriched pathways from expression profiling data, build and analyze the networks of genes and metabolites, and visualize changes in the gene/metabolite data. We demonstrate the applications of Metscape to annotate molecular pathways for human and mouse metabolites implicated in the pathogenesis of sepsis-induced acute lung injury, for the analysis of gene expression and metabolite data from pancreatic ductal adenocarcinoma, and for identification of the candidate metabolites involved in cancer and inflammation. AVAILABILITY: Metscape is part of the National Institutes of Health-supported National Center for Integrative Biomedical Informatics (NCIBI) suite of tools, freely available at http://metscape.ncibi.org. It can be downloaded from http://cytoscape.org or installed via Cytoscape plugin manager. CONTACT: metscape-help@umich.edu; akarnovs@umich.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Perfilação da Expressão Gênica , Metabolômica , Software , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Humanos , Inflamação/metabolismo , Redes e Vias Metabólicas , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteômica , Sepse/metabolismo
3.
BMC Bioinformatics ; 12: 81, 2011 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-21418606

RESUMO

BACKGROUND: Gene set enrichment testing has helped bridge the gap from an individual gene to a systems biology interpretation of microarray data. Although gene sets are defined a priori based on biological knowledge, current methods for gene set enrichment testing treat all genes equal. It is well-known that some genes, such as those responsible for housekeeping functions, appear in many pathways, whereas other genes are more specialized and play a unique role in a single pathway. Drawing inspiration from the field of information retrieval, we have developed and present here an approach to incorporate gene appearance frequency (in KEGG pathways) into two current methods, Gene Set Enrichment Analysis (GSEA) and logistic regression-based LRpath framework, to generate more reproducible and biologically meaningful results. RESULTS: Two breast cancer microarray datasets were analyzed to identify gene sets differentially expressed between histological grade 1 and 3 breast cancer. The correlation of Normalized Enrichment Scores (NES) between gene sets, generated by the original GSEA and GSEA with the appearance frequency of genes incorporated (GSEA-AF), was compared. GSEA-AF resulted in higher correlation between experiments and more overlapping top gene sets. Several cancer related gene sets achieved higher NES in GSEA-AF as well. The same datasets were also analyzed by LRpath and LRpath with the appearance frequency of genes incorporated (LRpath-AF). Two well-studied lung cancer datasets were also analyzed in the same manner to demonstrate the validity of the method, and similar results were obtained. CONCLUSIONS: We introduce an alternative way to integrate KEGG PATHWAY information into gene set enrichment testing. The performance of GSEA and LRpath can be enhanced with the integration of appearance frequency of genes. We conclude that, generally, gene set analysis methods with the integration of information from KEGG PATHWAY performs better both statistically and biologically.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Frequência do Gene , Humanos , Armazenamento e Recuperação da Informação , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes
4.
Bioinformatics ; 26(4): 456-63, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20007254

RESUMO

MOTIVATION: The elucidation of biological concepts enriched with differentially expressed genes has become an integral part of the analysis and interpretation of genomic data. Of additional importance is the ability to explore networks of relationships among previously defined biological concepts from diverse information sources, and to explore results visually from multiple perspectives. Accomplishing these tasks requires a unified framework for agglomeration of data from various genomic resources, novel visualizations, and user functionality. RESULTS: We have developed ConceptGen, a web-based gene set enrichment and gene set relation mapping tool that is streamlined and simple to use. ConceptGen offers over 20,000 concepts comprising 14 different types of biological knowledge, including data not currently available in any other gene set enrichment or gene set relation mapping tool. We demonstrate the functionalities of ConceptGen using gene expression data modeling TGF-beta-induced epithelial-mesenchymal transition and metabolomics data comparing metastatic versus localized prostate cancers.


Assuntos
Perfilação da Expressão Gênica/métodos , Reconhecimento Automatizado de Padrão/métodos , Software , Animais , Biologia Computacional , Bases de Dados Genéticas , Redes Reguladoras de Genes , Humanos , Masculino , Metástase Neoplásica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pancreáticas/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
5.
BMC Bioinformatics ; 10 Suppl 9: S3, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19761573

RESUMO

BACKGROUND: Chronic renal diseases are currently classified based on morphological similarities such as whether they produce predominantly inflammatory or non-inflammatory responses. However, such classifications do not reliably predict the course of the disease and its response to therapy. In contrast, recent studies in diseases such as breast cancer suggest that a classification which includes molecular information could lead to more accurate diagnoses and prediction of treatment response. This article describes how we extracted gene expression profiles from biopsies of patients with chronic renal diseases, and used network visualizations and associated quantitative measures to rapidly analyze similarities and differences between the diseases. RESULTS: The analysis revealed three main regularities: (1) Many genes associated with a single disease, and fewer genes associated with many diseases. (2) Unexpected combinations of renal diseases that share relatively large numbers of genes. (3) Uniform concordance in the regulation of all genes in the network. CONCLUSION: The overall results suggest the need to define a molecular-based classification of renal diseases, in addition to hypotheses for the unexpected patterns of shared genes and the uniformity in gene concordance. Furthermore, the results demonstrate the utility of network analyses to rapidly understand complex relationships between diseases and regulated genes.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Nefropatias/classificação , Nefropatias/genética , Perfilação da Expressão Gênica/métodos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA