Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
CPT Pharmacometrics Syst Pharmacol ; 10(7): 684-695, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33938166

RESUMO

A quantitative systems pharmacology model for metastatic melanoma was developed for immuno-oncology with the goal of predicting efficacy of combination checkpoint therapy with pembrolizumab and ipilimumab. This literature-based model is developed at multiple scales: (i) tumor and immune cell interactions at a lesion level; (ii) multiple heterogeneous target lesions, nontarget lesion growth, and appearance of new metastatic lesion at a patient level; and (iii) interpatient differences at a population level. The model was calibrated to pembrolizumab and ipilimumab monotherapy in patients with melanoma from Robert et al., specifically, waterfall plot showing target lesion response and overall response rate (Response Evaluation Criteria in Solid Tumors [RECIST] version 1.1), which additionally considers nontarget lesion growth and appearance of new metastatic lesions. We then used the model to predict waterfall and RECIST version 1.1 for combination treatment reported in Long et al. A key insight from this work was that nontarget lesions growth and appearance of new metastatic lesion contributed significantly to disease progression, despite reduction in target lesions. Further, the lesion level simulations of combination therapy show substantial efficacy in warm lesions (intermediary immunogenicity) but limited advantage of combination in both cold and hot lesions (low and high immunogenicity). Because many patients with metastatic disease are expected to have a mixture of these lesions, disease progression in such patients may be driven by a subset of cold lesions that are unresponsive to checkpoint inhibitors. These patients may benefit more from the combinations which include therapies to target cold lesions than double checkpoint inhibitors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Melanoma/tratamento farmacológico , Modelos Biológicos , Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Simulação por Computador , Progressão da Doença , Humanos , Ipilimumab/administração & dosagem , Melanoma/imunologia , Melanoma/patologia , Farmacologia em Rede
2.
Toxicol Appl Pharmacol ; 373: 1-9, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30998937

RESUMO

Cadmium (Cd) is a known human lung carcinogen. In addition, Cd exposure is associated with several lung diseases including emphysema, chronic obstructive pulmonary disease (COPD), asthma and fibrosis. Although earlier studies have identified several processes dysregulated by Cd exposure, the underlying mechanisms remain unclear. Here, we examined the transcriptome of lung epithelial cells exposed to Cd to understand the molecular basis of Cd-induced diseases. Computational analysis of the transcriptome predicted a significant number of Cd-upregulated genes to be targets of miR-30 family miRNAs. Experimental validation showed downregulation of all the miR-30 family members in Cd exposed cells. We found SNAIL, an EMT master regulator, to be the most upregulated among the miR-30 targets. Furthermore, we found decrease in the levels of epithelial marker E- cadherin (CDH1) and increase in the levels of mesenchymal markers, ZEB1 and vimentin. This suggested induction of EMT in Cd exposed cells. Luciferase reporter assays showed that miR-30 repressed SNAIL by directly targeting its 3' UTR. Over expression of miR-30e and transfection of miR-30e mimics reduced Cd-induced SNAIL upregulation. Our results suggest that miR-30 negatively regulates SNAIL in lung epithelial cells and that Cd-induced downregulation of miR-30 relieves this repression, resulting in SNAIL upregulation and EMT induction. EMT plays a major role in many diseases associated with Cd exposure including fibrosis, COPD, and cancer and metastasis. Therefore, our identification of miR-30 downregulation in Cd exposed cells and the consequent activation of SNAIL provides important mechanistic insights into lung diseases associated with Cd exposure.


Assuntos
Cloreto de Cádmio/toxicidade , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , MicroRNAs/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Regiões 3' não Traduzidas , Antígenos CD/genética , Antígenos CD/metabolismo , Sítios de Ligação , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Regulação para Baixo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Pulmão/patologia , MicroRNAs/genética , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Transcriptoma , Regulação para Cima , Vimentina/genética , Vimentina/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
3.
Mol Carcinog ; 57(6): 794-806, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29528143

RESUMO

Nickel (Ni) is an environmental and occupational carcinogen, and exposure to Ni is associated with lung and nasal cancers in humans. Furthermore, Ni exposure is implicated in several lung diseases including chronic inflammatory airway diseases, asthma, and fibrosis. However, the mutagenic potential of Ni is low and does not correlate with its potent toxicity and carcinogenicity. Therefore, mechanisms underlying Ni exposure-associated diseases remain poorly understood. Since the health risks of environmental exposures often continue post exposure, understanding the exposure effects that persist after the termination of exposure could provide mechanistic insights into diseases. By examining the persistent effects of Ni exposure, we report that Ni induces epithelial-mesenchymal transition (EMT) and that the mesenchymal phenotype remains irreversible even after the termination of exposure. Ni-induced EMT was dependent on the irreversible upregulation of ZEB1, an EMT master regulator, via resolution of its promoter bivalency. ZEB1, upon activation, downregulated its repressors as well as the cell-cell adhesion molecule, E-cadherin, resulting in the cells undergoing EMT and switching to persistent mesenchymal status. ZEB1 depletion in cells exposed to Ni attenuated Ni-induced EMT. Moreover, Ni exposure did not induce EMT in ZEB1-depleted cells. Activation of EMT, during which the epithelial cells lose cell-cell adhesion and become migratory and invasive, plays a major role in asthma, fibrosis, and cancer and metastasis, lung diseases associated with Ni exposure. Therefore, our finding of irreversible epigenetic activation of ZEB1 by Ni exposure and the acquisition of persistent mesenchymal phenotype would have important implications in understanding Ni-induced diseases.


Assuntos
Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Níquel/farmacologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Hipóxia Celular , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Humanos , Fenótipo , Interferência de RNA , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
4.
Toxicol Res (Camb) ; 6(3): 312-323, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29057067

RESUMO

Mercury (Hg) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are major environmental contaminants that commonly co-occur in the environment. Both Hg and TCDD are associated with a number of human diseases including cancers. While the individual toxicological effects of Hg and TCDD have been extensively investigated, studies on co-exposure are limited to a few genes and pathways. Therefore, a significant knowledge gap exists in the understanding of the deleterious effects of co-exposure to Hg and TCDD. Due to the prevalence of Hg and TCDD co-contamination in the environment and the major human health hazards they pose, it is important to obtain a fuller understanding of genome-wide effects of Hg and TCDD co-exposure. In this study, by performing a comprehensive transcriptomic analysis of human bronchial epithelial cells (BEAS-2B) exposed to Hg and TCDD individually and in combination, we have uncovered a subset of genes with altered expression only in the co-exposed cells. We also identified the additive as well as antagonistic effects of Hg and TCDD on gene expression. Moreover, we found that co-exposure impacted several biological and disease processes not affected by Hg or TCDD individually. Our studies show that the consequences of Hg and TCDD co-exposure on the transcriptional program and biological processes could be substantially different from single exposures, thus providing new insights into the co-exposure-specific pathogenic processes.

5.
Sleep Disord ; 2017: 6768323, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29057124

RESUMO

RATIONALE: Overall validity of existing genetic biomarkers in the diagnosis of obstructive sleep apnea (OSA) remains unclear. The objective of this systematic genetic study is to identify "novel" biomarkers for OSA using systems biology approach. METHODS: Candidate genes for OSA were extracted from PubMed, MEDLINE, and Embase search engines and DisGeNET database. The gene ontology (GO) analyses and candidate genes prioritization were performed using Enrichr tool. Genes pertaining to the top 10 pathways were extracted and used for Ingenuity Pathway Analysis. RESULTS: In total, we have identified 153 genes. The top 10 pathways associated with OSA include (i) serotonin receptor interaction, (ii) pathways in cancer, (iii) AGE-RAGE signaling in diabetes, (iv) infectious diseases, (v) serotonergic synapse, (vi) inflammatory bowel disease, (vii) HIF-1 signaling pathway, (viii) PI3-AKT signaling pathway, (ix) regulation lipolysis in adipocytes, and (x) rheumatoid arthritis. After removing the overlapping genes, we have identified 23 candidate genes, out of which >30% of the genes were related to the genes involved in the serotonin pathway. Among these 4 serotonin receptors SLC6A4, HTR2C, HTR2A, and HTR1B were strongly associated with OSA. CONCLUSIONS: This preliminary report identifies several potential candidate genes associated with OSA and also describes the possible regulatory mechanisms.

6.
J Cell Physiol ; 231(7): 1611-20, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26588041

RESUMO

Oxygen levels range from 2% to 9% in vivo. Atmospheric O2 levels (21%) are known to induce cell proliferation defects and cellular senescence in primary cell cultures. However, the mechanistic basis of the deleterious effects of higher O2 levels is not fully understood. On the other hand, immortalized cells including cancer cell lines, which evade cellular senescence are normally cultured at 21% O2 and the effects of higher O2 on these cells are understudied. Here, we addressed this problem by culturing immortalized human bronchial epithelial (BEAS-2B) cells at ambient atmospheric, 21% O2 and lower, 10% O2. Our results show increased inflammatory response at 21% O2 but not at 10% O2. We found higher RelA binding at the NF-κB1/RelA target gene promoters as well as upregulation of several pro-inflammatory cytokines in cells cultured at 21% O2. RelA knockdown prevented the upregulation of the pro-inflammatory cytokines at 21% O2, suggesting NF-κB1/RelA as a major mediator of inflammatory response in cells cultured at 21% O2. Interestingly, unlike the 21% O2 cultured cells, exposure of 10% O2 cultured cells to H2O2 did not elicit inflammatory response, suggesting increased ability to tolerate oxidative stress in cells cultured at lower O2 levels.


Assuntos
Inflamação/metabolismo , Pulmão/metabolismo , Oxigênio/metabolismo , Fator de Transcrição RelA/genética , Proliferação de Células , Senescência Celular , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Técnicas de Silenciamento de Genes , Humanos , Inflamação/patologia , Pulmão/patologia , Regiões Promotoras Genéticas , Fator de Transcrição RelA/metabolismo
7.
J Biol Chem ; 290(21): 13321-43, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25825498

RESUMO

Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented ΔmimG:Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant MsmRv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-κB, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.


Assuntos
Autofagia , Macrófagos/imunologia , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/patogenicidade , Nicotinamida Fosforribosiltransferase/metabolismo , Estresse Oxidativo , Tuberculose/imunologia , Peixe-Zebra/imunologia , Animais , Apoptose , Western Blotting , Adesão Celular , Movimento Celular , Proliferação de Células , Parede Celular/metabolismo , Células Cultivadas , Feminino , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/citologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Mycobacterium marinum/crescimento & desenvolvimento , Mycobacterium tuberculosis/crescimento & desenvolvimento , NF-kappa B , Nicotinamida Fosforribosiltransferase/genética , Fagocitose , Conformação Proteica , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia , Virulência/imunologia , Peixe-Zebra/metabolismo , Peixe-Zebra/microbiologia
8.
Proc Natl Acad Sci U S A ; 111(40): 14631-6, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246589

RESUMO

Investigations into the genomic landscape of histone modifications in heterochromatic regions have revealed histone H3 lysine 9 dimethylation (H3K9me2) to be important for differentiation and maintaining cell identity. H3K9me2 is associated with gene silencing and is organized into large repressive domains that exist in close proximity to active genes, indicating the importance of maintenance of proper domain structure. Here we show that nickel, a nonmutagenic environmental carcinogen, disrupted H3K9me2 domains, resulting in the spreading of H3K9me2 into active regions, which was associated with gene silencing. We found weak CCCTC-binding factor (CTCF)-binding sites and reduced CTCF binding at the Ni-disrupted H3K9me2 domain boundaries, suggesting a loss of CTCF-mediated insulation function as a potential reason for domain disruption and spreading. We furthermore show that euchromatin islands, local regions of active chromatin within large H3K9me2 domains, can protect genes from H3K9me2-spreading-associated gene silencing. These results have major implications in understanding H3K9me2 dynamics and the consequences of chromatin domain disruption during pathogenesis.


Assuntos
Cromatina/metabolismo , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Níquel/farmacologia , Acetilação , Sequência de Aminoácidos , Sítios de Ligação/genética , Western Blotting , Brônquios/citologia , Fator de Ligação a CCCTC , Linhagem Celular , Cromatina/genética , Epigênese Genética/genética , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Genoma Humano/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA