Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Can J Cardiol ; 37(6): 857-866, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33290826

RESUMO

BACKGROUND: Arrhythmogenic cardiomyopathy (AC) is a heritable myocardial disorder and a major cause of sudden cardiac death. It is typically caused by mutations in desmosomal genes. Desmin gene (DES) variants have been previously reported in AC but with insufficient evidence to support their pathogenicity. METHODS: We aimed to assess a large AC patient cohort for DES mutations and describe a unique phenotype associated with a recurring variant in three families. A cohort of 138 probands with a diagnosis of AC and no identifiable desmosomal gene mutations were prospectively screened by whole-exome sequencing. RESULTS: A single DES variant (p.Leu115Ile, c.343C>A) was identified in 3 index patients (2%). We assessed the clinical phenotypes within their families and confirmed cosegregation. One carrier required heart transplantation, 2 died suddenly, and 1 died of noncardiac causes. All cases had right- and left-ventricular (LV) involvement. LV late gadolinium enhancement was present in all, and circumferential subepicardial distribution was confirmed on histology. A significant burden of ventricular arrhythmias was noted. Desmin aggregates were not observed macroscopically, but analysis of the desmin filament formation in transfected cardiomyocytes derived from induced pluripotent stem cells, and SW13 cells revealed cytoplasmic aggregation of mutant desmin. Atomic force microscopy revealed that the mutant form accumulates into short protofilaments and small fibrous aggregates. CONCLUSIONS: DES p.Leu115Ile leads to disruption of the desmin filament network and causes a malignant biventricular form of AC, characterized by LV dysfunction and a circumferential subepicardial distribution of myocardial fibrosis.


Assuntos
Cardiomiopatias , Desmina/genética , Fibrose Endomiocárdica , Disfunção Ventricular Esquerda , Disfunção Ventricular Direita , Fibrilação Ventricular , Cardiomiopatias/complicações , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Cardiomiopatias/terapia , Morte Súbita Cardíaca , Fibrose Endomiocárdica/diagnóstico , Fibrose Endomiocárdica/etiologia , Feminino , Estado Funcional , Triagem de Portadores Genéticos/métodos , Testes de Função Cardíaca/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Distrofias Musculares/genética , Distrofias Musculares/patologia , Mutação de Sentido Incorreto , Miocárdio/patologia , Reino Unido , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Direita/diagnóstico , Disfunção Ventricular Direita/etiologia , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/etiologia
2.
Int J Mol Sci ; 21(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102357

RESUMO

Arrhythmogenic Cardiomyopathy (AC) is a clinically and genetically heterogeneous myocardial disease. Half of AC patients harbour private desmosomal gene variants. Although microRNAs (miRNAs) have emerged as key regulator molecules in cardiovascular diseases and their involvement, correlated to phenotypic variability or to non-invasive biomarkers, has been advanced also in AC, no data are available in larger disease cohorts. Here, we propose the largest AC cohort unbiased by technical and biological factors. MiRNA profiling on nine right ventricular tissue, nine blood samples of AC patients, and four controls highlighted 10 differentially expressed miRNAs in common. Six of these were validated in a 90-AC patient cohort independent from genetic status: miR-122-5p, miR-133a-3p, miR-133b, miR-142-3p, miR-182-5p, and miR-183-5p. This six-miRNA set showed high discriminatory diagnostic power in AC patients when compared to controls (AUC-0.995), non-affected family members of AC probands carrying a desmosomal pathogenic variant (AUC-0.825), and other cardiomyopathy groups (Hypertrophic Cardiomyopathy: AUC-0.804, Dilated Cardiomyopathy: AUC-0.917, Brugada Syndrome: AUC-0.981, myocarditis: AUC-0.978). AC-related signalling pathways were targeted by this set of miRNAs. A unique set of six-miRNAs was found both in heart-tissue and blood samples of AC probands, supporting its involvement in disease pathogenesis and its possible role as a non-invasive AC diagnostic biomarker.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Biomarcadores/metabolismo , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Miocárdio/metabolismo , Adolescente , Adulto , Idoso , Displasia Arritmogênica Ventricular Direita/sangue , Displasia Arritmogênica Ventricular Direita/diagnóstico , Biomarcadores/sangue , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Curva ROC , Transdução de Sinais/genética , Adulto Jovem
3.
Circulation ; 140(3): 184-192, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31006259

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a heritable myocardial disease with age-related penetrance. Current guidelines recommend clinical screening of relatives beginning at 10 years of age, but the clinical value of this approach has not been systematically evaluated. METHODS: Anonymized clinical data were collected from children referred for family screening between 1994 and 2017 after diagnosis of HCM in a first-degree relative. RESULTS: Of 1198 consecutive children (≤18 years of age) from 594 families who underwent serial evaluation (median, 3.5 years; interquartile range, 1.2-7), 32 individuals met diagnostic criteria at baseline (median maximal left ventricular wall thickness, 13 mm; interquartile range, 8-21 mm), and 25 additional patients developed HCM during follow-up. Median age at diagnosis was 10 years (interquartile range, 4-13 years); 44 (72%) were ≤12 years of age. Median age of affected patients at the last follow-up was 14 years (interquartile range, 9.5-18.2 years). A family history of childhood HCM was more common in those patients diagnosed with HCM (n=32 [56%] versus n=257 [23%]; P<0.001). Eighteen patients (32%) were started on medication for symptoms; 2 (4%) underwent a septal myectomy; 14 (25%) received an implantable cardioverter-defibrillator; 1 underwent cardiac transplantation; 2 had a resuscitated cardiac arrest; and 1 died after a cerebrovascular accident. CONCLUSIONS: Almost 5% of first-degree child relatives undergoing screening meet diagnostic criteria for HCM at first or subsequent evaluations, with the majority presenting as preadolescents; a diagnosis in a child first-degree relative is made in 8% of families screened. The phenotype of familial HCM in childhood is varied and includes severe disease, suggesting that clinical screening should begin at a younger age.


Assuntos
Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Família , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Programas de Rastreamento/métodos , Adolescente , Criança , Pré-Escolar , Feminino , Seguimentos , Testes Genéticos/tendências , Humanos , Lactente , Recém-Nascido , Masculino , Programas de Rastreamento/tendências , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA