Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(37): e2305494120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669364

RESUMO

Cryoelectron microscopy (Cryo-EM) has enabled structural determination of proteins larger than about 50 kDa, including many intractable by any other method, but it has largely failed for smaller proteins. Here, we obtain structures of small proteins by binding them to a rigid molecular scaffold based on a designed protein cage, revealing atomic details at resolutions reaching 2.9 Å. We apply this system to the key cancer signaling protein KRAS (19 kDa in size), obtaining four structures of oncogenic mutational variants by cryo-EM. Importantly, a structure for the key G12C mutant bound to an inhibitor drug (AMG510) reveals significant conformational differences compared to prior data in the crystalline state. The findings highlight the promise of cryo-EM scaffolds for advancing the design of drug molecules against small therapeutic protein targets in cancer and other human diseases.


Assuntos
Diagnóstico por Imagem , Humanos , Microscopia Crioeletrônica
2.
Transl Oncol ; 19: 101390, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35290919

RESUMO

Irinotecan (IRI) loaded actively into PEGylated liposomes via a sucrosulfate gradient has been approved recently to treat advanced pancreatic cancer. In this study, a similar liposomal composition was developed that includes a low mole fraction (1 mol.%) of porphyrin-phospholipid (PoP), a photosensitizer that stably incorporates into liposomes, to confer light-triggered IRI release. IRI-loaded PoP liposomes containing ammonium sucrosulfate (ASOS) as a complexing agent were more stable in serum compared to liposomes employing the more conventional ammonium sulfate. Without irradiation, PoP IRI liposomes released less than 5% IRI during 8 h of incubation in bovine serum at 37 °C, but released over 90% of the drug within minutes of exposure to red light (665 nm) irradiation. A single treatment with IRI-PoP liposomes and light exposure (15 mg/kg IRI with 250 J/cm2) resulted in tumor eradication in mice bearing either MIA PaCa-2 tumors or low-passage patient-derived tumor xenografts that recapitulate characteristics of the clinical disease. Analogous monotherapies of IRI or photodynamic therapy were ineffective in controlling tumor growth. Enhanced drug uptake could be visualized within laser-treated tumors by direct in situ imaging of irinotecan. Biodistribution analysis of IRI, its active metabolite (SN-38), and major metabolite (SN-38 G) showed that laser treatment significantly increased tumor accumulation of all IRI-derived molecular species. A pharmacokinetic model that hypothesized tumor vasculature permeabilization as the primary reason underlying the increased drug deposition accounted for the enhanced drug influx into tumors.

3.
Cancer Immunol Res ; 10(3): 314-326, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34992135

RESUMO

Tumor-associated self-antigens are potential cancer vaccine targets but suffer from limited immunogenicity. There are examples of mutated, short self-peptides inducing epitope-specific CD8+ T cells more efficiently than the wild-type epitope, but current approaches cannot yet reliably identify such epitopes, which are referred to as enhanced mimotopes ("e-mimotopes"). Here, we present a generalized strategy to develop e-mimotopes, using the tyrosinase-related protein 2 (Trp2) peptide Trp2180-188, which is a murine MHC class I (MHC-I) epitope, as a test case. Using a vaccine adjuvant that induces peptide particle formation and strong cellular responses with nanogram antigen doses, a two-step method systematically identified e-mimotope candidates with murine immunization. First, position-scanning peptide microlibraries were generated in which each position of the wild-type epitope sequence was randomized. Randomization of only one specific residue of the Trp2 epitope increased antitumor immunogenicity. Second, all 20 amino acids were individually substituted and tested at that position, enabling the identification of two e-mimotopes with single amino acid mutations. Despite similar MHC-I affinity compared with the wild-type epitope, e-mimotope immunization elicited improved Trp2-specific cytotoxic T-cell phenotypes and improved T-cell receptor affinity for both the e-mimotopes and the native epitope, resulting in better outcomes in multiple prophylactic and therapeutic tumor models. The screening method was also applied to other targets with other murine MHC-I restriction elements, including epitopes within glycoprotein 70 and Wilms' Tumor Gene 1, to identify additional e-mimotopes with enhanced potency.


Assuntos
Vacinas Anticâncer , Animais , Antígenos de Neoplasias , Epitopos , Camundongos , Peptídeos , Linfócitos T Citotóxicos
4.
J Immunother Cancer ; 9(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34862254

RESUMO

BACKGROUND: Induction of CD8+ T cells that recognize immunogenic, mutated protein fragments in the context of major histocompatibility class I (MHC-I) is a pressing challenge for cancer vaccine development. METHODS: Using the commonly used murine renal adenocarcinoma RENCA cancer model, MHC-I restricted neoepitopes are predicted following next-generation sequencing. Candidate neoepitopes are screened in mice using a potent cancer vaccine adjuvant system that converts short peptides into immunogenic nanoparticles. An identified functional neoepitope vaccine is then tested in various therapeutic experimental tumor settings. RESULTS: Conversion of 20 short MHC-I restricted neoepitope candidates into immunogenic nanoparticles results in antitumor responses with multivalent vaccination. Only a single neoepitope candidate, Nesprin-2 L4492R (Nes2LR), induced functional responses but still did so when included within 20-plex or 60-plex particles. Immunization with the short Nes2LR neoepitope with the immunogenic particle-inducing vaccine adjuvant prevented tumor growth at doses multiple orders of magnitude less than with other vaccine adjuvants, which were ineffective. Nes2LR vaccination inhibited or eradicated disease in subcutaneous, experimental lung metastasis and orthotopic tumor models, synergizing with immune checkpoint blockade. CONCLUSION: These findings establish the feasibility of using short, MHC-I-restricted neoepitopes for straightforward immunization with multivalent or validated neoepitopes to induce cytotoxic CD8+ T cells. Furthermore, the Nes2LR neoepitope could be useful for preclinical studies involving renal cell carcinoma immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Carcinoma de Células Renais/prevenção & controle , Epitopos/imunologia , Proteínas do Tecido Nervoso/imunologia , Proteínas Nucleares/imunologia , Fragmentos de Peptídeos/farmacologia , Animais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/prevenção & controle , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/química , Fragmentos de Peptídeos/imunologia , Linfócitos T Citotóxicos/imunologia
5.
Adv Sci (Weinh) ; 8(24): e2103023, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34716694

RESUMO

Short peptides reflecting major histocompatibility complex (MHC) class I (MHC-I) epitopes frequently lack sufficient immunogenicity to induce robust antigen (Ag)-specific CD8+ T cell responses. In the current work, it is demonstrated that position-scanning peptide libraries themselves can serve as improved immunogens, inducing Ag-specific CD8+ T cells with greater frequency and function than the wild-type epitope. The approach involves displaying the entire position-scanning library onto immunogenic nanoliposomes. Each library contains the MHC-I epitope with a single randomized position. When a recently identified MHC-I epitope in the glycoprotein gp70 envelope protein of murine leukemia virus (MuLV) is assessed, only one of the eight positional libraries tested, randomized at amino acid position 5 (Pos5), shows enhanced induction of Ag-specific CD8+ T cells. A second MHC-I epitope from gp70 is assessed in the same manner and shows, in contrast, multiple positional libraries (Pos1, Pos3, Pos5, and Pos8) as well as the library mixture give rise to enhanced CD8+ T cell responses. The library mixture Pos1-3-5-8 induces a more diverse epitope-specific T-cell repertoire with superior antitumor efficacy compared to an established single mutation mimotope (AH1-A5). These data show that positional peptide libraries can serve as immunogens for improving CD8+ T-cell responses against endogenously expressed MHC-I epitopes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Leucemia/imunologia , Ativação Linfocitária/imunologia , Biblioteca de Peptídeos , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C
6.
Small ; 17(11): e2007165, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33605054

RESUMO

Human papilloma virus (HPV)-16 is associated with cervical cancers and induces expression of the E6 and E7 oncogenes. Using a murine cell line that expresses these, the genes are sequenced, and six predicted major histocompatibility complex (MHC) class I (MHC-I) epitopes are identified. A liposomal vaccine adjuvant based on cobalt-porphyrin-phospholipid (CoPoP) is admixed with synthetic 9-mer epitopes appended with three histidine residues, resulting in rapid formation of peptide-liposome particles. Immunization with multivalent peptides leads to protection from tumor challenge. Of the peptides screened, only the previously identified E749-57 epitope is functional. The peptide-liposome particles that form upon mixing E7HHH49-57 with CoPoP liposomes are stable in serum and are avidly taken up by immune cells in vitro. Immunization results in robust protection from tumor challenge and re-challenge. A 100 ng peptide dose protects mice in a therapeutic tumor challenge when admixed with CoPoP liposomes, whereas 200-fold higher peptide doses are ineffective with the polyinosinic-polycytidylic (poly(I:C)) adjuvant. CoPoP induces a strong infiltrating CD8+ T-cell response within the tumor microenvironment with an improved functional profile. Vaccine monotherapy using nanogram dosing of the E7HHH49-57 peptide admixed with CoPoP reverses the growth of large established tumors, eradicating subcutaneous tumors upwards of 100 mm3 . Immunization also eradicates lung tumors in a metastasis model.


Assuntos
Vacinas Anticâncer , Infecções por Papillomavirus , Adjuvantes Imunológicos , Animais , Feminino , Humanos , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus/prevenção & controle , Peptídeos , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA