Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 18(3): 1113-1126, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35080744

RESUMO

Mesenchymal stromal/stem cells (MSCs) have great capacity for immune regulation. MSCs provide protective paracrine effects, which are partially exerted by extracellular vesicles (EVs). It has been reported that MSCs-derived EVs (MSC-EVs) contain soluble factors, such as cytokines, chemokines, growth factors and even microRNAs, which confer them similar anti-inflammatory and regenerative effects to MSCs. Moreover, MSCs modulate microglia activation through a dual mechanism of action that relies both on cell contact and secreted factors. Microglia cells are the central nervous system immune cells and the main mediators of the inflammation leading to neurodegenerative disorders. Here, we investigated whether MSC-EVs affect the activation of microglia cells by ß-amyloid aggregates. We show that the presence of MSC-EVs can prevent the upregulation of pro-inflammatory mediators such as tumor necrosis factor (TNF)-α and nitric oxide (NO). Both are up-regulated in neurodegenerative diseases representing chronic inflammation, as in Alzheimer's disease. We demonstrate that MSC-EVs are internalized by the microglia cells. Further, our study supports the use of MSC-EVs as a promising therapeutic tool to treat neuroinflammatory diseases.Significance StatementIt has been reported that mesenchymal stromal/stem cells and MSC-derived small extracellular vesicles have therapeutic effects in the treatment of various degenerative and inflammatory diseases. Extracellular vesicles are loaded with proteins, lipids and RNA and act as intercellular communication mediators. Here we show that extracellular vesicles can be taken up by murine microglial cells. In addition, they partially reduce the activation of microglial cells against ß-amyloid aggregates. This inhibition of microglia activation may present an effective strategy for the control/therapy of neurodegenerative diseases such as Alzheimer's disease.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Células-Tronco Mesenquimais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Inflamação/patologia , Camundongos , Microglia/patologia
2.
Cytotherapy ; 22(11): 653-668, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32855067

RESUMO

BACKGROUND AIMS: Mesenchymal stroma/stem-like cells (MSCs) are a popular cell source and hold huge therapeutic promise for a broad range of possible clinical applications. However, to harness their full potential, current limitations in harvesting, expansion and characterization have to be overcome. These limitations are related to the heterogeneity of MSCs in general as well as to inconsistent experimental protocols. Here we aim to compare in vitro methods to facilitate comparison of MSCs generated from various tissues. METHODS: MSCs from 3 different tissues (bone marrow, dental pulp, adipose tissue), exemplified by cells from 3 randomly chosen donors per tissue, were systematically compared with respect to their in vitro properties after propagation in specific in-house standard media, as established in the individual laboratories, or in the same commercially available medium. RESULTS: Large differences were documented with respect to the expression of cell surface antigens, population doubling times, basal expression levels of 5 selected genes and osteogenic differentiation. The commercial medium reduced differences in these parameters with respect to individual human donors within tissue and between tissues. The extent, size and tetraspanin composition of extracellular vesicles were also affected. CONCLUSIONS: The results clearly demonstrate the extreme heterogeneity of MSCs, which confirms the problem of reproducibility of results, even when harmonizing experimental conditions, and questions the significance of common parameters for MSCs from different tissues in vitro.


Assuntos
Meios de Cultura/farmacologia , Células-Tronco Mesenquimais/citologia , Especificidade de Órgãos , Tecido Adiposo/citologia , Antígenos de Superfície/metabolismo , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Cálcio/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Polpa Dentária/citologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Reprodutibilidade dos Testes , Tetraspaninas/metabolismo , Doadores de Tecidos
3.
J Control Release ; 319: 63-76, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31866504

RESUMO

Extracellular vesicles (ECVs) are secreted cell-derived membrane particles involved in intercellular signaling and cell-cell communication. By transporting various bio-macromolecules, ECVs and in particular exosomes are relevant in various (patho-) physiological processes. ECVs are also released by cancer cells and can confer pro-tumorigenic effects. Their target cell tropism, effects on proliferation rates, natural stability in blood and immunotolerance makes ECVs particularly interesting as delivery vehicles. Polyethylenimines (PEIs) are linear or branched polymers which are capable of forming non-covalent complexes with small RNA molecules including siRNAs or antimiRs, for their delivery in vitro and in vivo. This study explores for the first time the combination of PEI-based nanoparticles with naturally occurring ECVs from different cell lines, for the delivery of small RNAs. ECV-modified PEI/siRNA complexes are analyzed by electron microscopy vs. ECV or complex alone. On the functional side, we demonstrate increased knockdown efficacy and storage stability of PEI/siRNA complexes upon their modification with ECVs. This is paralleled by enhanced tumor cell-inhibition by ECV-modified PEI/siRNA complexes targeting Survivin. Pre-treatment with various inhibitors of cellular internalization reveals alterations in cellular uptake mechanisms and biological activities of PEI/siRNA complexes upon their ECV modification. Extending our studies towards PEI-complexed antimiRs against miR-155 or miR-1246, dose-dependent cellular and molecular effects are enhanced in ECV-modified complexes, based on the de-repression of direct miRNA target genes. Differences between ECVs from different cell lines are observed regarding their capacity of enhancing PEI/siRNA efficacies, independent of the target cell line for transfection. Finally, an in vivo therapy study in mice bearing s.c. PC3 prostate carcinoma xenografts reveals marked inhibition of tumor growth upon treatment with ECVPC3-modified PEI/siSurvivin complexes, based on profound target gene knockdown. We conclude that ECV-modification enhances the activity of PEI-based complexes, by altering pivotal physicochemical and biological nanoparticle properties.


Assuntos
Vesículas Extracelulares , Polietilenoimina , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Masculino , Camundongos , RNA Interferente Pequeno , Transfecção
4.
Stem Cells ; 35(3): 812-823, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27862694

RESUMO

Microglia cells are the central nervous system immune cells and have been pointed out as the main mediators of the inflammation leading to neurodegenerative disorders. Mesenchymal stromal cells (MSCs) are a heterogeneous population of cells with very high self-renewal properties and uncomplicated in vitro culture. Research has shown that MSCs have the capacity to induce tissue regeneration and reduce inflammation. Studies demonstrated that MSCs have complex paracrine machineries involving shedding of cell-derived microvesicles (MVs), which entail part of the regulatory and regenerative activity of MSCs, as observed in animal models. We proposed MSC-derived MVs as potent regulators of microglia activation and used an in vitro model of stimulation for BV-2 cells, a microglia cell line, with lipopolysaccharides (LPS). Here we demonstrated that presence of MSCs-derived MVs (MSC-MVs) prevents Tumor necrosis factor-α, Interleukin (IL)-1ß and IL-6 upregulation by BV-2 cells and primary microglia cells toward LPS. Also, inducible isoform of nitric oxide synthases and Prostaglandin-endoperoxide synthase 2 upregulation were hampered in presence of MSC-MVs. Higher levels of the M2 microglia marker chemokine ligand-22 were detectable in BV-2 cells after coculture with MSC-MVs in presence and absence of LPS. Moreover, upregulation of the activation markers CD45 and CD11b by BV-2 cells was prevented when cocultured with MSC-MVs. Furthermore, MSC-MVs suppressed the phosphorylation of the extracellular signal kinases 1/2, c-Jun N-terminal kinases and the p38 MAP kinase (p38) molecules. Consequently, MSC-MVs might represent a modulator of microglia activation with future therapeutic impact. Stem Cells 2017;35:812-823.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microglia/patologia , Animais , Micropartículas Derivadas de Células/efeitos dos fármacos , Células Cultivadas , Proteína Ligante Fas/metabolismo , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Receptor fas/metabolismo
5.
Nature ; 507(7492): 366-370, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24572363

RESUMO

B lymphocytes have critical roles as positive and negative regulators of immunity. Their inhibitory function has been associated primarily with interleukin 10 (IL-10) because B-cell-derived IL-10 can protect against autoimmune disease and increase susceptibility to pathogens. Here we identify IL-35-producing B cells as key players in the negative regulation of immunity. Mice in which only B cells did not express IL-35 lost their ability to recover from the T-cell-mediated demyelinating autoimmune disease experimental autoimmune encephalomyelitis (EAE). In contrast, these mice displayed a markedly improved resistance to infection with the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as shown by their superior containment of the bacterial growth and their prolonged survival after primary infection, and upon secondary challenge, compared to control mice. The increased immunity found in mice lacking IL-35 production by B cells was associated with a higher activation of macrophages and inflammatory T cells, as well as an increased function of B cells as antigen-presenting cells (APCs). During Salmonella infection, IL-35- and IL-10-producing B cells corresponded to two largely distinct sets of surface-IgM(+)CD138(hi)TACI(+)CXCR4(+)CD1d(int)Tim1(int) plasma cells expressing the transcription factor Blimp1 (also known as Prdm1). During EAE, CD138(+) plasma cells were also the main source of B-cell-derived IL-35 and IL-10. Collectively, our data show the importance of IL-35-producing B cells in regulation of immunity and highlight IL-35 production by B cells as a potential therapeutic target for autoimmune and infectious diseases. This study reveals the central role of activated B cells, particularly plasma cells, and their production of cytokines in the regulation of immune responses in health and disease.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Imunidade/imunologia , Interleucinas/metabolismo , Infecções por Salmonella/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos CD40/imunologia , Feminino , Humanos , Interleucina-10/metabolismo , Interleucinas/imunologia , Ativação Linfocitária , Macrófagos/citologia , Macrófagos/imunologia , Masculino , Camundongos , Plasmócitos/imunologia , Plasmócitos/metabolismo , Infecções por Salmonella/microbiologia , Linfócitos T/imunologia , Receptor 4 Toll-Like/imunologia
6.
Thromb Haemost ; 111(6): 1077-88, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24500083

RESUMO

The antioxidant enzyme heme oxygenase (HO)-1, which catalyses the first and rate-limiting step of heme degradation, has major anti-inflammatory and immunomodulatory effects via its cell-type-specific functions in the endothelium. In the current study, we investigated whether the key endothelial adhesion and signalling receptor PECAM-1 (CD31) might be involved in the regulation of HO-1 gene expression in human endothelial cells (ECs). To this end PECAM-1 expression was down-regulated in human umbilical vein ECs (HUVECs) by an adenoviral vector-based knockdown approach. PECAM-1 knockdown markedly induced HO-1, but not the constitutive HO isoform HO-2. Nuclear translocation of the transcription factor NF-E2-related factor-2 (Nrf2), which is a master regulator of the inducible antioxidant cell response, and intracellular levels of reactive oxygen species (ROS) were increased in PECAM-1-deficient HUVECs, respectively. PECAM-1-dependent HO-1 regulation was also examined in PECAM-1 over-expressing Chinese hamster ovary and murine L-cells. Endogenous HO-1 gene expression and reporter gene activity of transiently transfected luciferase HO-1 promoter constructs with Nrf2 target sequences were decreased in PECAM-1 over-expressing cells. Moreover, a regulatory role of ROS for HO-1 regulation in these cells is demonstrated by studies with the antioxidant N-acetylcysteine and exogenous hydrogenperoxide. Finally, direct interaction of PECAM-1 with a native complex of its binding partner NB1 (CD177) and serine proteinase 3 (PR3) from human neutrophils, markedly induced HO-1 expression in HUVECs. Taken together, we demonstrate a functional link between HO-1 gene expression and PECAM-1 in human ECs, which might play a critical role in the regulation of inflammation.


Assuntos
Células Endoteliais/metabolismo , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Proteínas Ligadas por GPI/metabolismo , Técnicas de Silenciamento de Genes , Heme Oxigenase-1/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Isoantígenos/metabolismo , Células L , Camundongos , Mieloblastina/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Regulação para Cima
7.
Transfusion ; 51(2): 293-305, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20723170

RESUMO

BACKGROUND: The human cytokine granulocyte-colony stimulatory factor (G-CSF) has found widespread application in the medical treatment of neutropenia and to mobilize hematopoietic stem cells used for transplantation. So far, the effect of G-CSF on natural killer (NK) cells has not been fully investigated. STUDY DESIGN AND METHODS: The effect of G-CSF on the phenotype, cytokine secretion profile, and cytotoxicity of NK cells was assessed. NK cells incubated in vitro in presence of G-CSF for 48 hours as well as NK cells isolated from peripheral blood of G-CSF-mobilized stem cell donors (in vivo) were used. RESULTS: In vitro, G-CSF caused a strongly altered phenotype in NK cells with 49% down regulation of NKp44 frequency. Furthermore, the expression of the activating receptors NKp46 and NKG2D decreased 40 and 64%, respectively. The expression of KIR2DL1 and KIR2DL2 decreased by 46% each. In cytotoxicity assays, the lytic capacity of G-CSF-exposed NK cells is reduced by up to 68% in vitro and up to 83% in vivo. Accordingly, granzyme B levels of in vivo G-CSF-exposed NK cells were reduced by up to 87% in comparison to nonstimulated NK cells. Cytokine production of in vitro and in vivo incubated NK cells was strongly decreased for interferon-γ, tumor necrosis factor-α, and granulocyte macrophage colony-stimulating factor as well as interleukin (IL)-6 and IL-8. Furthermore, we observed a reduction in proliferation and a positive feedback loop that increased the expression of the G-CSF receptor. CONCLUSION: G-CSF was demonstrated to be a strong inhibitor of NK cells activity and may prevent their graft-versus-leukemia effect after transplantation.


Assuntos
Citotoxicidade Imunológica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/imunologia , Citocinas/biossíntese , Citocinas/genética , Depressão Química , Regulação da Expressão Gênica/efeitos dos fármacos , Efeito Enxerto vs Leucemia/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Granzimas/biossíntese , Granzimas/genética , Humanos , Células Matadoras Naturais/metabolismo , Lenograstim , Subfamília K de Receptores Semelhantes a Lectina de Células NK/biossíntese , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Receptor 1 Desencadeador da Citotoxicidade Natural/biossíntese , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Receptor 2 Desencadeador da Citotoxicidade Natural/biossíntese , Receptor 2 Desencadeador da Citotoxicidade Natural/genética , Receptores de Fator Estimulador de Colônias de Granulócitos/biossíntese , Receptores de Fator Estimulador de Colônias de Granulócitos/genética , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA