Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 3173, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609390

RESUMO

Semaphorin-3A (SEMA3A) functions as a chemorepulsive signal during development and can affect T cells by altering their filamentous actin (F-actin) cytoskeleton. The exact extent of these effects on tumour-specific T cells are not completely understood. Here we demonstrate that Neuropilin-1 (NRP1) and Plexin-A1 and Plexin-A4 are upregulated on stimulated CD8+ T cells, allowing tumour-derived SEMA3A to inhibit T cell migration and assembly of the immunological synapse. Deletion of NRP1 in both CD4+ and CD8+ T cells enhance CD8+ T-cell infiltration into tumours and restricted tumour growth in animal models. Conversely, over-expression of SEMA3A inhibit CD8+ T-cell infiltration. We further show that SEMA3A affects CD8+ T cell F-actin, leading to inhibition of immune synapse formation and motility. Examining a clear cell renal cell carcinoma patient cohort, we find that SEMA3A expression is associated with reduced survival, and that T-cells appear trapped in SEMA3A rich regions. Our study establishes SEMA3A as an inhibitor of effector CD8+ T cell tumour infiltration, suggesting that blocking NRP1 could improve T cell function in tumours.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Actinas , Linfócitos T CD8-Positivos , Citoesqueleto , Semaforina-3A/genética
3.
J Biomol Struct Dyn ; 38(6): 1575-1589, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31084346

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are considered as important components in protein translation as they facilitate the attachment of specific transfer RNA (tRNA) to form aminoacyl-tRNAs. Our study focused on understanding the crystal structure of Glutaminyl-tRNA synthetase (GlnRS) from Thermus thermophilus HB8 (PDB ID:5ZDO) and mechanism of formation of enzyme-substrate complex using substrates and its analogs by applying molecular dynamics simulation (MDS) to investigate the conformational changes. Least energy structure of TtGlnRS was considered to dock the enzyme substrates such as glutamine (Gln), glutamic acid (Glu), adenosine monophosphate (AMP), adenosine triphosphate (ATP), QSI and various substrate analogs (2MA, 4SU and 5MU) onto the active site of the enzyme. We focused on comparative analysis of binding specificity between Gln and Glu; similarly, ATP and AMP. Active site organization as observed by MDS analysis showed interactive changes associated with substrate and catalytically important loops. Study found that when tRNAGln specific for GlnRS was docked into the active site of the TtGlnRS enzyme it interacts with 2' OH on the ribose acceptor end of the tRNA. Upon validation with 50 ns MDS, the maximum deviations and conformational changes of secondary structural elements were observed to be high in the loop regions of enzyme-substrate complexes. Binding affinity of ATP to TtGlnRS was further proved by isothermal titration calorimetry. AbbreviationsaaRSsaminoacyl-tRNA synthetasesAMPadenosine monophosphateATPadenosine triphosphateGlideGrid-based LIgand Docking with EnergeticGlnRSglutaminyl-tRNA synthetaseGRAVYGRand AVerage of hydropathicitYGROMACSGROingen Machine for Chemical SimulationsHADDOCKHigh Ambiguity Driven protein-protein DOCKingITCisothermal titration calorimetry2MA2-methyladenosine 5'-(dihydrogen phosphate)MDSmolecular dynamics simulation5MU5-methyluridine 5'-monophosphateNPTnumber of particles, pressure and temperatureNVTnumber of particles, volume and temperatureOPLS-AAoptimized potential for liquid simulation all atomPDBBrookhaven Protein DatabankPMEParticle-Mesh EwaldQSI5'-o-[n-(l-Glutaminyl)-sulfamoyl]adenosineRgradius of gyrationRMSDroot mean square deviationRMSFroot mean square fluctuation4SU4-thiouracil 5'-monophosphateSPCsimple point chargetRNAtransfer ribo nucleic acidTtThermus thermophilusXPextra precisionCommunicated by Ramaswamy H. Sarma.


Assuntos
Aminoacil-tRNA Sintetases , Simulação de Dinâmica Molecular , Aminoacil-tRNA Sintetases/metabolismo , Sítios de Ligação , Simulação de Acoplamento Molecular , RNA de Transferência , RNA de Transferência de Glutamina
4.
Nat Commun ; 9(1): 3137, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087334

RESUMO

Through major histocompatibility complex class Ia leader sequence-derived (VL9) peptide binding and CD94/NKG2 receptor engagement, human leucocyte antigen E (HLA-E) reports cellular health to NK cells. Previous studies demonstrated a strong bias for VL9 binding by HLA-E, a preference subsequently supported by structural analyses. However, Mycobacteria tuberculosis (Mtb) infection and Rhesus cytomegalovirus-vectored SIV vaccinations revealed contexts where HLA-E and the rhesus homologue, Mamu-E, presented diverse pathogen-derived peptides to CD8+ T cells, respectively. Here we present crystal structures of HLA-E in complex with HIV and Mtb-derived peptides. We show that despite the presence of preferred primary anchor residues, HLA-E-bound peptides can adopt alternative conformations within the peptide binding groove. Furthermore, combined structural and mutagenesis analyses illustrate a greater tolerance for hydrophobic and polar residues in the primary pockets than previously appreciated. Finally, biochemical studies reveal HLA-E peptide binding and exchange characteristics with potential relevance to its alternative antigen presenting function in vivo.


Assuntos
Epitopos , Antígenos de Histocompatibilidade Classe I/imunologia , Peptídeos/imunologia , Animais , Apresentação de Antígeno , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Citomegalovirus , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Células Matadoras Naturais/imunologia , Macaca mulatta , Mycobacterium tuberculosis , Ligação Proteica , Conformação Proteica , Vírus da Imunodeficiência Símia/imunologia , Antígenos HLA-E
5.
Structure ; 23(5): 819-829, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25817387

RESUMO

The Chinese herb Dichroa febrifuga has traditionally treated malaria-associated fever. Its active component febrifugine (FF) and derivatives such as halofuginone (HF) are potent anti-malarials. Here, we show that FF-based derivatives arrest parasite growth by direct interaction with and inhibition of the protein translation enzyme prolyl-tRNA synthetase (PRS). Dual administration of inhibitors that target different tRNA synthetases suggests high utility of these drug targets. We reveal the ternary complex structure of PRS-HF and adenosine 5'-(ß,γ-imido)triphosphate where the latter facilitates HF integration into the PRS active site. Structural analyses also highlight spaces within the PRS architecture for HF derivatization of its quinazolinone, but not piperidine, moiety. We also show a remarkable ability of HF to kill the related human parasite Toxoplasma gondii, suggesting wider HF efficacy against parasitic PRSs. Hence, our cell-, enzyme-, and structure-based data on FF-based inhibitors strengthen the case for their inclusion in anti-malarial and anti-toxoplasmosis drug development efforts.


Assuntos
Aminoacil-tRNA Sintetases/química , Antimaláricos/farmacologia , Piperidinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quinazolinonas/farmacologia , Aminoacil-tRNA Sintetases/metabolismo , Antimaláricos/química , Domínio Catalítico/efeitos dos fármacos , Cristalografia , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Piperidinas/química , Plasmodium falciparum/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Quinazolinonas/química , Relação Estrutura-Atividade , Toxoplasma/química , Toxoplasma/efeitos dos fármacos , Toxoplasma/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA