Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lung ; 200(3): 305-313, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35503474

RESUMO

PURPOSE: ADAMTS7 is a secreted metalloproteinase enzyme and proteoglycan associated with the early progression of coronary artery disease. However, there is limited information regarding the role of ADAMTS7 in lung adaptive immunity and inflammation. Thus, we sought to assess whether ADAMTS7 expression in the lung modulates house dust mite (HDM)-induced airway inflammation and Th2 immune response. METHODS: The role of ADAMTS7 in HDM-induced airway disease was assessed in ADAMTS7-deficient (ADAMTS7-/-) mice and compared with the wild-type control mice by flow cytometry, ELISA, and histopathology. Furthermore, the antigen priming capability of dendritic cells (DC) was determined ex vivo by employing coculture with CD4+ OT-II cells. RESULTS: ADAMTS7-/- mice develop an augmented eosinophilic airway inflammation, mucous cell metaplasia, and increased Th2 immune response to inhaled HDM. In addition, allergen uptake by lung DC and migration to draining mediastinal lymph node were significantly increased in ADAMTS7-/- mice, which shows an enhanced capacity to mount allergen-specific T-cell proliferation and effector Th2 cytokine productions. We propose that the mechanism by which ADAMTS7 negatively regulates DC function involves attenuated antigen uptake and presentation capabilities, which reduces allergic sensitization and Th2 immune responses in the lung. CONCLUSION: In aggregate, we provide compelling evidence that ADAMTS7 plays a pivotal role in allergic airway disease and Th2 immunity and would be an attractive target for asthma.


Assuntos
Proteína ADAMTS7 , Eosinofilia , Hipersensibilidade , Células Th2 , Proteína ADAMTS7/metabolismo , Imunidade Adaptativa , Alérgenos , Animais , Citocinas/metabolismo , Células Dendríticas/metabolismo , Dermatophagoides pteronyssinus , Modelos Animais de Doenças , Humanos , Hipersensibilidade/imunologia , Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , Pyroglyphidae , Células Th2/imunologia
2.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L102-L115, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851736

RESUMO

Asthma and its heterogeneity change with age. Increased airspace neutrophil numbers contribute to severe steroid-resistant asthma exacerbation in the elderly, which correlates with the changes seen in adults with asthma. However, whether that resembles the same disease mechanism and pathophysiology in aged and adults is poorly understood. Here, we sought to address the underlying molecular mechanism of steroid-resistant airway inflammation development and response to corticosteroid (Dex) therapy in aged mice. To study the changes in inflammatory mechanism, we used a clinically relevant treatment model of house-dust mite (HDM)-induced allergic asthma and investigated lung adaptive immune response in adult (20-22 wk old) and aged (80-82 wk old) mice. Our result indicates an age-dependent increase in airway hyperresponsiveness (AHR), mixed granulomatous airway inflammation comprising eosinophils and neutrophils, and Th1/Th17 immune response with progressive decrease in frequencies and numbers of HDM-bearing dendritic cells (DC) accumulation in the draining lymph node (DLn) of aged mice as compared with adult mice. RNA-Seq experiments of the aged lung revealed short palate, lung, and nasal epithelial clone 1 (SPLUNC1) as one of the steroid-responsive genes, which progressively declined with age and further by HDM-induced inflammation. Moreover, we found increased glycolytic reprogramming, maturation/activation of DCs, the proliferation of OT-II cells, and Th2 cytokine secretion with recombinant SPLUNC1 (rSPLUNC1) treatment. Our results indicate a novel immunomodulatory role of SPLUNC1 regulating metabolic adaptation/maturation of DC. An age-dependent decline in the SPLUNC1 level may be involved in developing steroid-resistant airway inflammation and asthma heterogeneity.


Assuntos
Envelhecimento/patologia , Glicoproteínas/metabolismo , Inflamação/patologia , Fosfoproteínas/metabolismo , Sistema Respiratório/patologia , Esteroides/farmacologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/patologia , Dermatophagoides pteronyssinus/efeitos dos fármacos , Dexametasona/farmacologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glicólise/efeitos dos fármacos , Granuloma/patologia , Linfonodos/patologia , Mediastino/patologia , Modelos Biológicos , Sistema Respiratório/parasitologia
3.
Mucosal Immunol ; 15(2): 301-313, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34671116

RESUMO

Itaconate is produced from the mitochondrial TCA cycle enzyme aconitase decarboxylase (encoded by immune responsive gene1; Irg1) that exerts immunomodulatory function in myeloid cells. However, the role of the Irg1/itaconate pathway in dendritic cells (DC)-mediated airway inflammation and adaptive immunity to inhaled allergens, which are the primary antigen-presenting cells in allergic asthma, remains largely unknown. House dust mite (HDM)-challenged Irg1-/- mice displayed increases in eosinophilic airway inflammation, mucous cell metaplasia, and Th2 cytokine production with a mechanism involving impaired mite antigen presentations by DC. Adoptive transfer of HDM-pulsed DC from Irg1-deficient mice into naïve WT mice induced a similar phenotype of elevated type 2 airway inflammation and allergic sensitization. Untargeted metabolite analysis of HDM-pulsed DC revealed itaconate as one of the most abundant polar metabolites that potentially suppress mitochondrial oxidative damage. Furthermore, the immunomodulatory effect of itaconate was translated in vivo, where intranasal administration of 4-octyl itaconate 4-OI following antigen priming attenuated the manifestations of HDM-induced airway disease and Th2 immune response. Taken together, these data demonstrated for the first time a direct regulatory role of the Irg1/itaconate pathway in DC for the development of type 2 airway inflammation and suggest a possible therapeutic target in modulating allergic asthma.


Assuntos
Alérgenos , Células Dendríticas , Hidroliases , Succinatos , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Hidroliases/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Redes e Vias Metabólicas , Camundongos , Pyroglyphidae/imunologia , Succinatos/imunologia , Succinatos/metabolismo , Células Th2
4.
World J Diabetes ; 11(4): 126-136, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32313611

RESUMO

BACKGROUND: Obesity is a disease state with serious adverse metabolic complications, including glucose intolerance and type 2 diabetes that currently has no cure. Identifying and understanding roles of various modulators of body composition and glucose homeostasis is required for developing effective cures. Syndecan-1 (Sdc1) is a member of the heparan sulfate proteoglycan family that has mainly been investigated for its role in regulating proliferation and survival of epithelia and tumor cells, but little is known about its roles in regulating obesity and glucose homeostasis. AIM: To examine the role of Sdc1 in regulating body fat and glucose metabolism. METHODS: We used female wild type and Sdc1 knockout (Sdc1 KO) mice on BALB/c background and multiple methods. Metabolic measurements (rates of oxygen consumption, carbon dioxide production, respiratory exchange ratio and energy expenditure) were performed using an open-flow indirect calorimeter with additional features to measure food intake and physical activity. Glucose intolerance and insulin resistance were measured by established tolerance test methods. RESULTS: Although our primary goal was to investigate the effects of Sdc1 deficiency on body fat and glucose homeostasis, we uncovered that Sdc1 regulates multiple metabolic parameters. Sdc1KO mice have reduced body weight due to significant decreases in fat and lean masses under both chow and high fat diet conditions. The reduced body weight was not due to changes in food intakes, but Sdc1 KO mice exhibited altered feeding behavior as they ate more during the dark phase and less during the light phase than wild type mice. In addition, Sdc1 KO mice suffered from high rate of energy expenditure, glucose intolerance and insulin resistance. CONCLUSION: These results reveal critical multisystem and opposing roles for Sdc1 in regulating normal energy balance and glucose homeostasis. The results will have important implications for targeting Sdc1 to modulate metabolic parameters. Finally, we offer a novel hypothesis that could reconcile the opposing roles associated with Sdc1 deficiency.

5.
Front Immunol ; 11: 363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184787

RESUMO

Proliferation of dendritic cell (DC)-restricted progenitor cells in bone marrow compartment is tightly regulated at steady state and responds to multiple tissue-specific triggers during disturbed homeostasis such as obesity. DCs in the lung stem from a rapidly dividing DC-restricted progenitor cells and are effective at generating adaptive immune responses in allergic airway inflammation. Precisely, how DC-restricted progenitor expansion and differentiation are influenced by airway inflammation to maintain constant supply of myeloid DCs is poorly understood. Here we show that a high fat diet (HFD) induces oxidative stress and accelerates the expansion of DC- restricted progenitor cells in bone marrow and correlates with persistent induction of p38 mitogen activated protein kinase (MAPK), which is blocked with a selective p38α/ß MAPK inhibitor. Mice fed a HFD and sensitized to inhaled allergen house dust mite (HDM) led to alterations of DC- restricted progenitor cells that were characterized by increased expansion and seeding of lung DCs in airway inflammation. Mechanistically, we establish that the expansion induced by HFD dysregulates the expression of a disintegrin and metallopeptidase domain 17 (Adam17) and is required for p38 MAPK activation in DC-restricted progenitors. These results demonstrates that obesity produces persistent changes in DC precursors and that elevation of Adam17 expression is tightly coupled to p38 MAPK and is a key driver of proliferation. Altogether, these data provide phenotypic and mechanistic insight into dendritic cell supply chain in obesity-associated airway inflammation.


Assuntos
Células Dendríticas/imunologia , Hipersensibilidade/imunologia , Obesidade/imunologia , Pneumonia/imunologia , Células-Tronco/imunologia , Proteína ADAM17/metabolismo , Animais , Antígenos de Dermatophagoides/imunologia , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Int J Biol Macromol ; 105(Pt 1): 625-637, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28716750

RESUMO

Lipid nanoparticles are stable, biodegradable and biocompatible carriers offering excellent therapeutic efficacy. Here, a novel effort has been made to develop Miltefosine (HePC- hexadecylphosphocholine) stabilized chitosan anchored nanostructured lipid carriers (NLC) of Amphotericin B (AmB) as co-delivery vehicle to enhance killing of L. donovani. The entrapment efficiency of AmB was achieved upto 85.3% for HePC-AmB-CNLCs with mean particle size of 150.8±8.4nm, and zeta potential value of +28.2±1.1mV, respectively. The cumulative amount of AmB released at even after the 24h was less than 65% from HePC-AmB-CNLCs and Tween-80-AmB-CNLCs. Intravenous administration of HePC-AmB-CNLCs revealed the significantly increased localization of AmB in both liver and spleen when estimated. FACS study represented enhanced uptake of FITC-HePC-CNLCs over FITC-HePC-NLCs in J774A.1 cell lines. Highly significant in vitro and in vivo anti-leishmanial activity (p<0.05 compared with Tween 80-AmB-CNLCs) was observed with HePC-AmB-CNLCs when tested against VL in Leishmania donovani-infected hamsters. The haemolysis and cytotoxicity studies showed the safety of HePC-AmB-CNLCs and Tween 80-AmB-CNLCs. The findings suggested that it would be preferable to deliver AmB through HePC stabilized chitosan anchored nanostructured lipid carriers for rapid and effective treatment with decreased adverse effects.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Quitosana/química , Portadores de Fármacos/química , Leishmania donovani/efeitos dos fármacos , Nanopartículas/química , Fosforilcolina/análogos & derivados , Anfotericina B/química , Anfotericina B/farmacocinética , Anfotericina B/farmacologia , Animais , Antiprotozoários/farmacocinética , Linhagem Celular , Estabilidade de Medicamentos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Fosforilcolina/química , Ratos , Ratos Wistar , Distribuição Tecidual
7.
Int J Antimicrob Agents ; 48(6): 695-702, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27876275

RESUMO

Green fluorescent protein produces significant fluorescence and is extremely stable, however its excitation maximum is close to the ultraviolet range and thus can damage living cells. Hence, Leishmania donovani stably expressing DsRed were developed and their suitability for flow cytometry-based antileishmanial screening was assessed by evaluating the efficacies of standard drugs as well as newly synthesised chalcone thiazolyl-hydrazone compounds. The DsRed gene was successfully integrated at the 18S rRNA locus of L. donovani and transfectants (LdDsRed) were selected using hygromycin B. Enhanced expression of DsRed and a high level of infectivity to J774A.1 macrophages were achieved, which was confirmed by fluorescence microscopy and flow cytometry. Furthermore, these LdDsRed transfectants were utilised for development of an in vitro screening assay using the standard antileishmanial drugs miltefosine, amphotericin B, pentamidine and paromomycin. The response of transfectants to standard drugs correlated well with previous reports. Subsequently, the suitability of this system was further assessed by screening a series of 18 newly synthesised chalcone thiazolyl-hydrazone compounds in vitro for their antileishmanial activity, wherein 8 compounds showed moderate antileishmanial activity. The most active compound 5g, with ca. 73% splenic parasite reduction, exerted its activity via generating nitric oxide and reactive oxygen species and inducing apoptosis in LdDsRed-infected macrophages. Thus, these observations established the applicability of LdDsRed transfectants for flow cytometry-based antileishmanial screening. Further efforts aimed at establishing a high-throughput screening assay and determining the in vivo screening of potential antileishmanial leads are required.


Assuntos
Antiprotozoários/farmacologia , Chalcona/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Citometria de Fluxo/métodos , Leishmania donovani/efeitos dos fármacos , Proteínas Luminescentes/análise , Coloração e Rotulagem/métodos , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/isolamento & purificação , Linhagem Celular , Chalcona/administração & dosagem , Cricetinae , DNA de Protozoário/genética , DNA Ribossômico/genética , Modelos Animais de Doenças , Feminino , Genes Reporter , Hidrazonas/administração & dosagem , Hidrazonas/farmacologia , Leishmania donovani/genética , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/parasitologia , Proteínas Luminescentes/genética , Macrófagos/parasitologia , Masculino , Camundongos , RNA Ribossômico 18S/genética , Recombinação Genética , Resultado do Tratamento
8.
Colloids Surf B Biointerfaces ; 136: 150-9, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26381698

RESUMO

The present investigation reports the modification of chitosan nanoparticles with a ligand 4-sulfated N-acetyl galactosamine (4-SO4GalNAc) for efficient chemotherapy in leishmaniasis (SCNPs) by using dual strategy of targeting. These (SCNPs) were loaded with amphotericin B (AmB) for specific delivery to infected macrophages. Developed AmB loaded SCNPs (AmB-SCNPs) had mean particle size of 333 ± 7 nm, and showed negative zeta potential (-13.9 ± 0.016 mV). Flow cytometric analysis revealed enhanced uptake of AmB-SCNPs in J774A.1, when compared to AmB loaded unmodified chitosan NPs (AmB-CNPs). AmB-SCNPs provide significantly higher localization of AmB in liver and spleen as compared to AmB-CNPs after i.v. administration. The study stipulates that 4-SO4GalNAc assures of targeting, resident macrophages. Highly significant anti-leishmanial activity (P<0.05 compared with AmB-CNPs) was observed with AmB-SCNPs, causing 75.30 ± 3.76% inhibition of splenic parasitic burdens. AmB-CNPs and plain AmB caused only 63.89 ± 3.44% and 47.56 ± 2.37% parasite inhibition, respectively, in Leishmania-infected hamsters (P<0.01 for AmB-SCNPs versus plain AmB and AmB-CNPs versus plain AmB).


Assuntos
Acetilgalactosamina/química , Anfotericina B/administração & dosagem , Quitosana/química , Leishmaniose/tratamento farmacológico , Nanopartículas , Sulfatos/química , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Macrófagos/parasitologia , Camundongos , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
9.
PLoS One ; 7(9): e45766, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049855

RESUMO

Visceral leishmaniasis (VL) is one of the most important parasitic diseases with approximately 350 million people at risk. Due to the non availability of an ideal drug, development of a safe, effective, and affordable vaccine could be a solution for control and prevention of this disease. In this study, a potential Th1 stimulatory protein- Triose phosphate isomerase (TPI), a glycolytic enzyme, identified through proteomics from a fraction of Leishmania donovani soluble antigen ranging from 89.9-97.1 kDa, was assessed for its potential as a suitable vaccine candidate. The protein- L. donovani TPI (LdTPI) was cloned, expressed and purified which exhibited the homology of 99% with L. infantum TPI. The rLdTPI was further evaluated for its immunogenicity by lymphoproliferative response (LTT), nitric oxide (NO) production and estimation of cytokines in cured Leishmania patients/hamster. It elicited strong LTT response in cured patients as well as NO production in cured hamsters and stimulated remarkable Th1-type cellular responses including IFN-ã and IL-12 with extremely lower level of IL-10 in Leishmania-infected cured/exposed patients PBMCs in vitro. Vaccination with LdTPI-DNA construct protected naive golden hamsters from virulent L. donovani challenge unambiguously (∼90%). The vaccinated hamsters demonstrated a surge in IFN-ã, TNF-á and IL-12 levels but extreme down-regulation of IL-10 and IL-4 along with profound delayed type hypersensitivity and increased levels of Leishmania-specific IgG2 antibody. Thus, the results are suggestive of the protein having the potential of a strong candidate vaccine.


Assuntos
Leishmania donovani/enzimologia , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/parasitologia , Triose-Fosfato Isomerase/química , Animais , Linhagem Celular , Proliferação de Células , Clonagem Molecular , Cricetinae , Citocinas/metabolismo , Feminino , Glicólise , Humanos , Imunoglobulina G/química , Interferon-alfa/metabolismo , Interleucina-12/metabolismo , Interleucina-4/metabolismo , Leucócitos Mononucleares/enzimologia , Linfócitos/citologia , Linfócitos/parasitologia , Masculino , Mesocricetus , Óxido Nítrico/química , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Triose-Fosfato Isomerase/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA