Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 128(2): 1664-1674, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575239

RESUMO

Although tyrosol is a quorum-sensing molecule of Candida species, it has antifungal activity at supraphysiological concentrations. Here, we studied the effect of tyrosol on the physiology and genome-wide transcription of Aspergillus nidulans to gain insight into the background of the antifungal activity of this compound. Tyrosol efficiently reduced germination of conidia and the growth on various carbon sources at a concentration of 35 mM. The growth inhibition was fungistatic rather than fungicide on glucose and was accompanied with downregulation of 2199 genes related to e.g. mitotic cell cycle, glycolysis, nitrate and sulphate assimilation, chitin biosynthesis, and upregulation of 2250 genes involved in e.g. lipid catabolism, amino acid degradation and lactose utilization. Tyrosol treatment also upregulated genes encoding glutathione-S-transferases (GSTs), increased specific GST activities and the glutathione (GSH) content of the cells, suggesting that A. nidulans can detoxify tyrosol in a GSH-dependent manner even though this process was weak. Tyrosol did not induce oxidative stress in this species, but upregulated "response to nutrient levels", "regulation of nitrogen utilization", "carbon catabolite activation of transcription" and "autophagy" genes. Tyrosol may have disturbed the regulation and orchestration of cellular metabolism, leading to impaired use of nutrients, which resulted in growth reduction.


Assuntos
Antifúngicos , Aspergillus nidulans , Álcool Feniletílico/análogos & derivados , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Transcriptoma , Glutationa/genética , Glutationa/metabolismo , Glutationa/farmacologia , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
2.
Microbiol Spectr ; : e0028323, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676031

RESUMO

Several P1B-type ATPases are important Cd2+/Cu2+ pumps in Aspergillus species, and they are tightly associated with the heavy metal stress tolerance of these ascomycetous fungi. To better understand the roles of the two P1B-type ATPases, Aspergillus nidulans CrpA Cd2+/Cu2+ pump (orthologue of the Candida albicans Crp1 Cd2+/Cu2+ pump) and Aspergillus fumigatus PcaA Cd2+ pump (orthologue of the Saccharomyces cerevisiae Pca1 Cd2+ pump), we have generated individual mutants and characterized their heavy metal susceptibilities. The deletion of CrpA in A. nidulans has led to the increased sensitivity of the fungus to stresses induced by Zn2+, Fe2+, or the combination of oxidative-stress-inducing menadione sodium bisulfite and Fe3+. Heterologous expression of A. fumigatus PcaA in the S. cerevisiae pca1 deletion mutant has resulted in enhanced tolerance of the yeast to stresses elicited by Cd2+or Zn2+ but not by Fe2+/Fe3+ or Cu2+. Mammalian host immune defense can attack microbes by secreting Zn2+ or Cu2+, and the oxidative stress induced by host immune systems can also disturb metal (Cu2+, Fe2+, and Zn2+) homeostasis in microbes. In summary, PcaA and CrpA can protect fungal cells from these complex stresses that contribute to the virulence of the pathogenic Aspergillus species. Moreover, due to their presence on the fungal cell surface, these P1B-type ATPases may serve as a novel drug target in the future. IMPORTANCE Mammalian host immune defense disrupts heavy metal homeostasis of fungal pathogens. P1B-type ATPase of Aspergillus fumigatus and Aspergillus nidulans may help to cope with this stress and serve as virulence traits. In our experiments, both A. nidulans Cd2+/Cu2+ pump CrpA and A. fumigatus Cd2+ pump PcaA protected fungal cells from toxic Zn2+, and CrpA also decreased Fe2+ susceptibility most likely indirectly. In addition, CrpA protected cells against the combined stress induced by the oxidative stressor menadione and Fe3+. Since P1B-type ATPases are present on the fungal cell surface, these proteins may serve as a novel drug target in the future.

3.
Mol Nutr Food Res ; 61(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28731263

RESUMO

SCOPE: Saccharomyces cerevisiae is one of the most important microbes in food industry, but there is growing evidence on its potential pathogenicity as well. Its status as a member of human mycobiome is still not fully understood. METHODS AND RESULTS: In this study, we characterize clinical S. cerevisiae isolates from Hungarian hospitals along with commercial baking and probiotic strains, and determine their phenotypic parameters, virulence factors, interactions with human macrophages, and pathogenicity. Four of the clinical isolates could be traced back to commercial strains based on genetic fingerprinting. Our observations indicate that the commercial-derived clinical isolates have evolved new phenotypes and show similar, or in two cases, significantly decreased pathogenicity. Furthermore, immunological experiments revealed that the variability in human primary macrophage activation after coincubation with yeasts is largely donor and not isolate dependent. CONCLUSION: Isolates in this study offer an interesting insight into the potential microevolution of probiotic and food strains in human hosts. These commensal yeasts display various changes in their phenotypes, indicating that the colonization of the host does not necessarily impose a selective pressure toward higher virulence/pathogenicity.


Assuntos
Evolução Molecular , Microbiologia de Alimentos , Probióticos , Saccharomyces cerevisiae/fisiologia , Animais , Células Cultivadas , Culinária , Marcadores Genéticos , Interações Hospedeiro-Patógeno , Humanos , Hungria , Larva/crescimento & desenvolvimento , Larva/microbiologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Mariposas/crescimento & desenvolvimento , Mariposas/microbiologia , Micoses/microbiologia , Mapeamento de Peptídeos , Fagocitose , Probióticos/efeitos adversos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/patogenicidade , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Virulência/metabolismo
4.
Microbiology (Reading) ; 162(12): 2116-2125, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27902418

RESUMO

The glucocorticoid betamethasone (BM) is frequently employed in clinical practice because of its anti-inflammatory and immunosuppressive properties. In this study, we investigated the effect of BM (1 and 2 mM) on the ability of Candida albicans to adhere to, invade and damage oral, intestinal or vaginal epithelial cells, as well as to elicit cytokine and chemokine release. BM at 2 mM concentration stimulated adherence of C. albicans to vaginal cells and facilitated the invasion of intestinal and vaginal epithelia without influencing the growth rate of invading C. albicans hyphae at any type of epithelia and BM concentrations tested. In addition, BM at 2 mM concentration also augmented C. albicans-initiated cell damage of oral and intestinal cells. Furthermore, BM exposure decreased IL-6 cytokine and IL-8 chemokine release from oral and vaginal epithelial cells and also IL-6 release from intestinal epithelium after infection with C. albicans. These observations suggest that high-dose applications of BM may predispose patients to various epithelial C. albicans infections.


Assuntos
Betametasona/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/microbiologia , Células Epiteliais/microbiologia , Glucocorticoides/farmacologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Candidíase/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo
5.
J Basic Microbiol ; 56(10): 1071-1079, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27272511

RESUMO

Horseradish essential oil (HREO; a natural mixture of different isothiocyanates) had strong fungicide effect against Candida albicans both in volatile and liquid phase. In liquid phase this antifungal effect was more significant than those of its main components allyl, and 2-phenylethyl isothiocyanate. HREO, at sublethal concentration, induced oxidative stress which was characterized with elevated superoxide content and up-regulated specific glutathione reductase, glutathione peroxidase, catalase and superoxide dismutase activities. Induction of specific glutathione S-transferase activities as marker of glutathione (GSH) dependent detoxification was also observed. At higher concentration, HREO depleted the GSH pool, increased heavily the superoxide production and killed the cells rapidly. HREO and the GSH pool depleting agent, 1-chlore-2,4-dinitrobenzene showed strong synergism when they were applied together to kill C. albicans cells. Based on all these, we assume that GSH metabolism protects fungi against isothiocyanates.


Assuntos
Antifúngicos/farmacologia , Armoracia/metabolismo , Candida albicans/efeitos dos fármacos , Glutationa/metabolismo , Isotiocianatos/farmacologia , Óleos Voláteis/farmacologia , Catalase/metabolismo , Dinitroclorobenzeno/farmacologia , Sinergismo Farmacológico , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA