Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Gene ; 533(2): 488-93, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24144841

RESUMO

Interconversion between phosphocreatine and creatine, catalyzed by creatine kinase is crucial in the supply of ATP to tissues with high energy demand. Creatine's importance has been established by its use as an ergogenic aid in sport, as well as the development of intellectual disability in patients with congenital creatine deficiency. Creatine biosynthesis is complemented by dietary creatine uptake. Intracellular transport of creatine is carried out by a creatine transporter protein (CT1/CRT/CRTR) encoded by the SLC6A8 gene. Most tissues express this gene, with highest levels detected in skeletal muscle and kidney. There are lower levels of the gene detected in colon, brain, heart, testis and prostate. The mechanism(s) by which this regulation occurs is still poorly understood. A duplicated unprocessed pseudogene of SLC6A8-SLC6A10P has been mapped to chromosome 16p11.2 (contains the entire SLC6A8 gene, plus 2293 bp of 5'flanking sequence and its entire 3'UTR). Expression of SLC6A10P has so far only been shown in human testis and brain. It is still unclear as to what is the function of SLC6A10P. In a patient with autism, a chromosomal breakpoint that intersects the 5'flanking region of SLC6A10P was identified; suggesting that SLC6A10P is a non-coding RNA involved in autism. Our aim was to investigate the presence of cis-acting factor(s) that regulate expression of the creatine transporter, as well as to determine if these factors are functionally conserved upstream of the creatine transporter pseudogene. Via gene-specific PCR, cloning and functional luciferase assays we identified a 1104 bp sequence proximal to the mRNA start site of the SLC6A8 gene with promoter activity in five cell types. The corresponding 5'flanking sequence (1050 bp) on the pseudogene also had promoter activity in all 5 cell lines. Surprisingly the pseudogene promoter was stronger than that of its parent gene in 4 of the cell lines tested. To the best of our knowledge, this is the first experimental evidence of a pseudogene with stronger promoter activity than its parental gene.


Assuntos
Proteínas de Membrana Transportadoras/genética , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Regiões Promotoras Genéticas/genética , Pseudogenes/genética , Animais , Células Cultivadas , Clonagem Molecular , Creatina/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Isoformas de Proteínas/genética , Análise de Sequência de DNA , Homologia de Sequência , Células Swiss 3T3
2.
JIMD Rep ; 12: 121-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24097415

RESUMO

We evaluated a family with a 16-month-old boy with cirrhosis and hepatocellular carcinoma and his 30-month-old brother with cirrhosis. After failing to identify a diagnosis after routine metabolic evaluation, we utilized a combination of RNA-Seq and whole exome sequencing to identify a novel homozygous p.Ser171Phe Transaldolase (TALDO1) variant in the proband, his brother with cirrhosis, as well as a clinically asymptomatic older 8-year-old brother. Metabolite analysis and enzymatic testing of TALDO1 demonstrated elevated ribitol, sedoheptitol, and sedoheptulose-7P, and lack of activity of TALDO1 in the three children homozygous for the p.Ser171Phe mutation. Our findings expand the phenotype of transaldolase deficiency to include early onset hepatocellular carcinoma in humans and demonstrate that, even within the same family, individuals with the same homozygous mutation demonstrate a wide range of phenotypes.

3.
J Med Genet ; 50(11): 754-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24049096

RESUMO

BACKGROUND: Mosaic IDH1 mutations are described as the cause of metaphyseal chondromatosis with increased urinary excretion of D-2-hydroxyglutarate (MC-HGA), and mutations in IDH2 as the cause of D-2-hydroxyglutaric aciduria (D-2HGA) type II. Mosaicism for IDH2 mutations has not previously been reported as a cause of D-2HGA. Here we describe three cases: one MC-HGA case with IDH1 mosaic mutations, and two D-2HGA type II cases. In one D-2HGA case we identified mosaicism for an IDH2 mutation as the genetic cause of this disorder; the other D-2HGA case was caused by a heterozygous IDH2 mutation, while the unaffected mother was a mosaic carrier. METHODS: We performed amplicon deep sequencing using the 454 GS Junior platform, next to Sanger sequencing, to identify and confirm mosaicism of IDH1 or IDH2 mutations in MC-HGA or D-2HGA, respectively. RESULTS AND CONCLUSIONS: We identified different mutant allele percentages in DNA samples derived from different tissues (blood vs fibroblasts). Furthermore, we found that mutant allele percentages of IDH1 decreased after more passages had occurred in fibroblast cell cultures. We describe a method for the detection and validation of mosaic mutations in IDH1 and IDH2, making quantification with laborious cloning techniques obsolete.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Isocitrato Desidrogenase/genética , Mosaicismo , Encefalopatias Metabólicas Congênitas/diagnóstico , Células Cultivadas , Criança , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Pais
4.
Am J Hum Genet ; 92(4): 627-31, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23561848

RESUMO

The Krebs cycle is of fundamental importance for the generation of the energetic and molecular needs of both prokaryotic and eukaryotic cells. Both enantiomers of metabolite 2-hydroxyglutarate are directly linked to this pivotal biochemical pathway and are found elevated not only in several cancers, but also in different variants of the neurometabolic disease 2-hydroxyglutaric aciduria. Recently we showed that cancer-associated IDH2 germline mutations cause one variant of 2-hydroxyglutaric aciduria. Complementary to these findings, we now report recessive mutations in SLC25A1, the mitochondrial citrate carrier, in 12 out of 12 individuals with combined D-2- and L-2-hydroxyglutaric aciduria. Impaired mitochondrial citrate efflux, demonstrated by stable isotope labeling experiments and the absence of SLC25A1 in fibroblasts harboring certain mutations, suggest that SLC25A1 deficiency is pathogenic. Our results identify defects in SLC25A1 as a cause of combined D-2- and L-2-hydroxyglutaric aciduria.


Assuntos
Proteínas de Transporte de Ânions/genética , Encefalopatias Metabólicas Congênitas/etiologia , Ácido Cítrico/metabolismo , Genes Recessivos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mutação/genética , Sequência de Aminoácidos , Biomarcadores/análise , Encefalopatias Metabólicas Congênitas/metabolismo , Encefalopatias Metabólicas Congênitas/patologia , Estudos de Casos e Controles , Células Cultivadas , Cromatografia Líquida , Exoma/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Glutaratos/urina , Humanos , Masculino , Dados de Sequência Molecular , Transportadores de Ânions Orgânicos , Fenótipo , Estrutura Terciária de Proteína , Estudos Retrospectivos , Homologia de Sequência de Aminoácidos , Estereoisomerismo , Espectrometria de Massas em Tandem
5.
Clin Chem Lab Med ; 51(3): 683-92, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23095202

RESUMO

BACKGROUND: Choline is essential for mammalian cell function. It plays a critical role in cell membrane integrity, neurotransmission, cell signaling and lipid metabolism. Moreover, choline is involved in methylation in two ways: a) its synthesis requires methyl groups donated by S-adenosyl-methionine (AdoMet); and b) choline oxidation product betaine methylates homocysteine (Hcy) to methionine (Met) and produces dimethylglycine. This later donates one carbon units to tetrahydrofolate (THF). METHODS: To evaluate the correlations of choline and betaine with folate, AdoMet, S-anenosyl-homocysteine (AdoHcy), total homocysteine (tHcy), and DNA methylation, choline, betaine and dimethylglycine were measured by LC-MS/MS in plasma of 109 healthy volunteers, in whom folate, AdoMet, AdoHcy, tHcy, and DNA methylation have previously been reported. RESULTS: Using a bivariate model, choline and betaine showed strong positive correlations with folate (r = 0.346 and r = 0.226), AdoHcy (r = 0.468 and r = 0.296), and correlated negatively with AdoMet/AdoHcy ratio (r = ­ 0.246 and r = ­ 0.379). Only choline was positively correlated with AdoMet (r = 0.453). Using a multivariate linear regression model, choline correlated strongly with folate ( ß = 17.416), AdoMet ( ß = 61.272), and AdoHcy ( ß = 9.215). Betaine correlated positively with folate ( ß = 0.133) and negatively with tHcy ( ß = ­ 0.194) ratio. Choline is an integral part of folate and methylation pathways. CONCLUSIONS: Our data highlight the importance of integrating choline in studies concerning addressing pathological conditions related to folate, homocysteine and methylation metabolism.


Assuntos
Betaína/sangue , Colina/sangue , Ácido Fólico/sangue , S-Adenosil-Homocisteína/sangue , S-Adenosilmetionina/sangue , Adolescente , Adulto , Cromatografia Líquida de Alta Pressão , Metilação de DNA , Feminino , Hormônios Esteroides Gonadais/metabolismo , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Sarcosina/análogos & derivados , Sarcosina/sangue , Fatores Sexuais , Espectrometria de Massas em Tandem , Adulto Jovem
6.
Cell Biochem Biophys ; 67(2): 341-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22038300

RESUMO

Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01-2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47(phox) expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47(phox), and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47(phox) in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47(phox) was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.


Assuntos
Apoptose/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Homocisteína/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , NADPH Oxidase 2 , NADPH Oxidase 4 , Óxido Nítrico/metabolismo , Transporte Proteico/efeitos dos fármacos
7.
Atherosclerosis ; 222(2): 509-11, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22484094

RESUMO

In hyperhomocysteinemia (HHcy), an independent risk factor for cardiovascular diseases, endothelial dysfunction due to reduced bioavailability of nitric oxide is a consistent finding. However, the underlying mechanisms remain unknown. Increased levels of the nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) have been associated with HHcy, and may contribute, at least in part, for the homocysteine-induced endothelial dysfunction, but whether cystathionine ß-synthase (CBS) deficiency is associated with increased ADMA has hardly been investigated. To address this question, we measured total homocysteine (tHcy), ADMA and symmetric dimethylarginine (SDMA) in plasma of 22 adult CBS deficient patients, using established HPLC techniques. Results showed that in CBS deficient patients with elevated levels of tHcy (median (total range): 33 (14-237) µmol/L), both ADMA and SDMA levels were normal. Moreover, tHcy and ADMA concentrations were not correlated (r(s)=0.017, p=0.94). Our results favor the hypothesis that the negative vascular effects of HHcy have an ADMA-independent etiology.


Assuntos
Arginina/análogos & derivados , Homocistinúria/sangue , Adulto , Arginina/sangue , Biomarcadores/sangue , Cromatografia Líquida de Alta Pressão , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Homocisteína/sangue , Homocistinúria/fisiopatologia , Humanos
8.
J Inherit Metab Dis ; 35(6): 1031-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22403017

RESUMO

Analysis of α-aminoadipic semialdehyde is an important tool in the diagnosis of antiquitin deficiency (pyridoxine-dependent epilepsy). However continuing use of this test has revealed that elevated urinary excretion of α-aminoadipic semialdehyde is not only found in patients with pyridoxine-dependent epilepsy but is also seen in patients with molybdenum cofactor deficiency and isolated sulphite oxidase deficiency. This should be taken into account when interpreting the laboratory data. Sulphite was shown to inhibit α-aminoadipic semialdehyde dehydrogenase in vitro.


Assuntos
Ácido 2-Aminoadípico/análogos & derivados , Erros Inatos do Metabolismo dos Aminoácidos/urina , Coenzimas/deficiência , Erros Inatos do Metabolismo dos Metais/urina , Metaloproteínas/deficiência , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/deficiência , Ácido 2-Aminoadípico/urina , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Criança , Cisteína/análogos & derivados , Cisteína/farmacologia , Humanos , Recém-Nascido , L-Aminoadipato-Semialdeído Desidrogenase/antagonistas & inibidores , Lisina/metabolismo , Redes e Vias Metabólicas , Erros Inatos do Metabolismo dos Metais/metabolismo , Modelos Biológicos , Cofatores de Molibdênio , Molibdoferredoxina/metabolismo , Molibdoferredoxina/urina , Pteridinas , Sulfito Oxidase/deficiência , Sulfito Oxidase/metabolismo , Sulfito Oxidase/urina , Sulfitos/farmacologia
9.
Am J Hum Genet ; 89(4): 507-15, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21963049

RESUMO

Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism.


Assuntos
Adenosina Quinase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias/metabolismo , Hepatopatias/patologia , Metionina/genética , Metionina/metabolismo , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Encefalopatias/genética , Criança , Deficiências do Desenvolvimento/genética , Saúde da Família , Feminino , Fibroblastos/metabolismo , Homocisteína/sangue , Homocisteína/genética , Humanos , Hepatopatias/genética , Masculino , Metionina/sangue , S-Adenosil-Homocisteína/sangue , S-Adenosilmetionina/sangue , S-Adenosilmetionina/genética
10.
Cell Metab ; 14(3): 415-27, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21907146

RESUMO

In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in yeast, we discovered that central metabolism is self-adapting to synchronize redox metabolism when respiration is activated. Low PYK activity activated yeast respiration. However, levels of reactive oxygen species (ROS) did not increase, and cells gained resistance to oxidants. This adaptation was attributable to accumulation of the PYK substrate phosphoenolpyruvate (PEP). PEP acted as feedback inhibitor of the glycolytic enzyme triosephosphate isomerase (TPI). TPI inhibition stimulated the pentose phosphate pathway, increased antioxidative metabolism, and prevented ROS accumulation. Thus, a metabolic feedback loop, initiated by PYK, mediated by its substrate and acting on TPI, stimulates redox metabolism in respiring cells. Originating from a single catalytic step, this autonomous reconfiguration of central carbon metabolism prevents oxidative stress upon shifts between fermentation and respiration.


Assuntos
Respiração Celular/fisiologia , Retroalimentação Fisiológica , Glicólise/fisiologia , Fosfoenolpiruvato/metabolismo , Piruvato Quinase/metabolismo , Saccharomyces cerevisiae/metabolismo , Triose-Fosfato Isomerase/metabolismo , Proliferação de Células , Cromatografia Líquida , Galactose/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Oxirredução , Estresse Oxidativo/genética , Via de Pentose Fosfato , Reação em Cadeia da Polimerase , Piruvato Quinase/genética , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem , Triose-Fosfato Isomerase/genética
11.
Mol Genet Metab ; 104(3): 362-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21752681

RESUMO

We present an 8-year-old boy with folate receptor alpha (FRα) defect and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM syndrome). Both conditions are exceptionally rare autosomal recessive inherited diseases mapped to 11q13. Our patient was found to have novel homozygous nonsense mutations in the FOLR1 gene (p.R204X), and FGF3 gene (p.C50X). While the FRα defect is a disorder of brain-specific folate transport accompanied with cerebral folate deficiency (CFD) causing progressive neurological symptoms, LAMM syndrome is a solely malformative condition, with normal physical growth and cognitive development. Our patient presented with congenital deafness, hypotonia, dysphygia and ataxia in early childhood. At the age of 6 years he developed intractable epilepsy, and deteriorated clinically with respiratory arrest and severe hypercapnea at the age of 8 years. In contrast to the previously published patients with a FOLR1 gene defect, our patient presented with an abnormal l-dopa metabolism in CSF and high 3-O-methyl-dopa. Upon oral treatment with folinic acid the boy regained consciousness while the epilepsy could be successfully managed only with additional pyridoxal 5'-phosphate (PLP). This report pinpoints the importance of CSF folate investigations in children with unexplained progressive neurological presentations, even if a malformative syndrome is obviously present, and suggests a trial with PLP in folinic acid-unresponsive seizures.


Assuntos
Anormalidades Congênitas/patologia , Orelha Interna/anormalidades , Epilepsia/tratamento farmacológico , Receptor 1 de Folato/genética , Deficiência de Ácido Fólico/patologia , Fosfato de Piridoxal/uso terapêutico , Anormalidades Dentárias/patologia , Sequência de Bases , Criança , Códon sem Sentido/genética , Microtia Congênita , Primers do DNA/genética , Di-Hidroxifenilalanina/análogos & derivados , Di-Hidroxifenilalanina/metabolismo , Orelha/anormalidades , Orelha/patologia , Eletroencefalografia , Epilepsia/etiologia , Epilepsia/patologia , Fator 3 de Crescimento de Fibroblastos/genética , Humanos , Levodopa/líquido cefalorraquidiano , Levodopa/metabolismo , Masculino , Dados de Sequência Molecular , Radiografia , Análise de Sequência de DNA , Crânio/diagnóstico por imagem , Síndrome , Tirosina/análogos & derivados
12.
Ann Neurol ; 69(3): 455-63, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21446021

RESUMO

OBJECTIVE: A high percentage of grade II and III gliomas have mutations in the gene encoding isocitrate dehydrogenase (IDH1). This mutation is always a heterozygous point mutation that affects the amino acid arginine at position 132 and results in loss of its native enzymatic activity and gain of alternative enzymatic activity (producing D-2-hydroxyglutarate). The objective of this study was to investigate the cellular effects of R132H mutations in IDH1. METHODS: Functional consequences of IDH1(R132H) mutations were examined among others using fluorescence-activated cell sorting, kinome and expression arrays, biochemical assays, and intracranial injections on 3 different (glioma) cell lines with stable overexpression of IDH1(R132H) . RESULTS: IDH1(R132H) overexpression in established glioma cell lines in vitro resulted in a marked decrease in proliferation, decreased Akt phosphorylation, altered morphology, and a more contact-dependent cell migration. The reduced proliferation is related to accumulation of D-2-hydroxyglutarate that is produced by IDH1(R132H) . Mice injected with IDH1(R132H) U87 cells have prolonged survival compared to mice injected with IDH1(wt) or green fluorescent protein-expressing U87 cells. INTERPRETATION: Our results demonstrate that IDH1(R132H) dominantly reduces aggressiveness of established glioma cell lines in vitro and in vivo. In addition, the IDH1(R132H) -IDH1(wt) heterodimer has higher enzymatic activity than the IDH1(R132H) -IDH1(R132H) homodimer. Our observations in model systems of glioma might lead to a better understanding of the biology of IDH1 mutant gliomas, which are typically low grade and often slow growing.


Assuntos
Proliferação de Células , Isocitrato Desidrogenase/genética , Mutação Puntual/genética , Animais , Linhagem Celular Tumoral , Citometria de Fluxo , Imuno-Histoquímica , Isocitrato Desidrogenase/metabolismo , Camundongos , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
13.
Science ; 330(6002): 336, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20847235

RESUMO

Heterozygous somatic mutations in the genes encoding isocitrate dehydrogenase-1 and -2 (IDH1 and IDH2) were recently discovered in human neoplastic disorders. These mutations disable the enzymes' normal ability to convert isocitrate to 2-ketoglutarate (2-KG) and confer on the enzymes a new function: the ability to convert 2-KG to d-2-hydroxyglutarate (D-2-HG). We have detected heterozygous germline mutations in IDH2 that alter enzyme residue Arg(140) in 15 unrelated patients with d-2-hydroxyglutaric aciduria (D-2-HGA), a rare neurometabolic disorder characterized by supraphysiological levels of D-2-HG. These findings provide additional impetus for investigating the role of D-2-HG in the pathophysiology of metabolic disease and cancer.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Mutação em Linhagem Germinativa , Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Adolescente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Criança , Pré-Escolar , Feminino , Glutaratos/urina , Heterozigoto , Humanos , Lactente , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Adulto Jovem
15.
FEBS Lett ; 584(1): 181-6, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-19932104

RESUMO

The mammalian degradation of lysine is believed to proceed via two distinct routes, the saccharopine and the pipecolic acid routes, that ultimately converge at the level of alpha-aminoadipic semialdehyde (alpha-AASA). alpha-AASA dehydrogenase-deficient fibroblasts were grown in cell culture medium supplemented with either L-[alpha-(15)N]lysine or L-[epsilon-(15)N]lysine to explore the exact route of lysine degradation. L-[alpha-(15)N]lysine was catabolised into [(15)N]saccharopine, [(15)N]alpha-AASA, [(15)N]Delta(1)-piperideine-6-carboxylate, and surprisingly in [(15)N]pipecolic acid, whereas L-[epsilon-(15)N]lysine resulted only in the formation of [(15)N]saccharopine. These results imply that lysine is exclusively degraded in fibroblasts via the saccharopine branch, and pipecolic acid originates from an alternative precursor. We hypothesize that pipecolic acid derives from Delta(1)-piperideine-6-carboxylate by the action of Delta(1)-pyrroline-5-carboxylic acid reductase, an enzyme involved in proline metabolism.


Assuntos
Aldeído Desidrogenase/deficiência , Fibroblastos/enzimologia , Lisina/metabolismo , Proteínas de Neoplasias/deficiência , Ácidos Pipecólicos/metabolismo , Linhagem Celular , Humanos , L-Aminoadipato-Semialdeído Desidrogenase , Ácidos Picolínicos/metabolismo , Pirróis/metabolismo
16.
Mol Genet Metab ; 97(4): 250-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19428278

RESUMO

We report studies of six individuals with marked elevations of cystathionine in plasma and/or urine. Studies of CTH, the gene that encodes cystathionine gamma-lyase, revealed the presence among these individuals of either homozygous or compound heterozygous forms of a novel large deletion, p.Gly57_Gln196del, two novel missense mutations, c.589C>T (p.Arg197Cys) and c.932C>T (p.Thr311Ile), and one previously reported alteration, c.200C>T (p.Thr67Ile). Another novel missense mutation, c.185G>T (p.Arg62His), was found in heterozygous form in three mildly hypercystathioninemic members of a Taiwanese family. In one severely hypercystathioninemic individual no CTH mutation was found. Brief clinical histories of the cystathioninemic/cystathioninuric patients are presented. Most of the novel mutations were expressed and the CTH activities of the mutant proteins determined. The crystal structure of the human enzyme, hCTH, and the evidence available as to the effects of the mutations in question, as well as those of the previously reported p.Gln240Glu, on protein structure, enzymatic activity, and responsiveness to vitamin B(6) administration are discussed. Among healthy Czech controls, 9.3% were homozygous for CTH c.1208G>T (p.Ser403Ile), previously found homozygously in 7.5% of Canadians for whom plasma total homocysteine (tHcy) had been measured. Compared to wild-type homozygotes, among the 55 Czech c.1208G>T (p.Ser403Ile) homozygotes a greater level of plasma cystathionine was found only after methionine loading. Three of the four individuals homozygous or compound heterozygous for inactivating CTH mutations had mild plasma tHcy elevations, perhaps indicating a cause-and-effect relationship. The experience with the present patients provides no evidence that severe loss of CTH activity is accompanied by adverse clinical effects.


Assuntos
Cistationina gama-Liase/genética , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/genética , Domínio Catalítico , Pré-Escolar , Cistationina/metabolismo , Cistationina gama-Liase/metabolismo , Feminino , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto
17.
Proc Natl Acad Sci U S A ; 105(46): 17807-11, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19004802

RESUMO

The glucose analogue 2-deoxy-D-glucose (2-DG) restrains growth of normal and malignant cells, prolongs the lifespan of C. elegans, and is widely used as a glycolytic inhibitor to study metabolic activity with regard to cancer, neurodegeneration, calorie restriction, and aging. Here, we report that separating glycolysis and the pentose phosphate pathway highly increases cellular tolerance to 2-DG. This finding indicates that 2-DG does not block cell growth solely by preventing glucose catabolism. In addition, 2-DG provoked similar concentration changes of sugar-phosphate intermediates in wild-type and 2-DG-resistant yeast strains and in human primary fibroblasts. Finally, a genome-wide analysis revealed 19 2-DG-resistant yeast knockouts of genes implicated in carbohydrate metabolism and mitochondrial homeostasis, as well as ribosome biogenesis, mRNA decay, transcriptional regulation, and cell cycle. Thus, processes beyond the metabolic block are essential for the biological properties of 2-DG.


Assuntos
Desoxiglucose/farmacologia , Células Eucarióticas/citologia , Células Eucarióticas/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Eucarióticas/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Via de Pentose Fosfato/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos
19.
Hum Mutat ; 29(4): 532-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18186520

RESUMO

The most common mutation in the nephropathic cystinosis (CTNS) gene is a homozygous 57-kb deletion that also includes an adjacent gene carbohydrate kinase-like (CARKL). The latter gene encodes a protein that is predicted to function as a carbohydrate kinase. Cystinosis patients with the common 57-kb deletion had strongly elevated urinary concentrations of sedoheptulose (28-451 mmol/mol creatinine; controls and other cystinosis patients <9) and erythritol (234-1110 mmol/mol creatinine; controls and other cystinosis patients <148). Enzyme studies performed on fibroblast homogenates derived from patients carrying the 57-kb deletion revealed 80% reduction in their sedoheptulose phosphorylating activity compared to cystinosis patients with other mutations and controls. This indicates that the CARKL-encoded protein, sedoheptulokinase (SHK), is responsible for the reaction: sedoheptulose + ATP --> sedoheptulose-7-phosphate + ADP and that deletion of CARKL causes urinary accumulation of sedoheptulose and erythritol.


Assuntos
Cistinose/enzimologia , Cistinose/genética , Heptoses/urina , Fosfotransferases/deficiência , Fosfotransferases/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Adolescente , Adulto , Sistemas de Transporte de Aminoácidos Neutros/deficiência , Sistemas de Transporte de Aminoácidos Neutros/genética , Estudos de Casos e Controles , Criança , Mapeamento Cromossômico , Cistinose/urina , Eritritol/urina , Fibroblastos/enzimologia , Genes Recessivos , Humanos , Lactente , Modelos Biológicos , Via de Pentose Fosfato , Fosfotransferases (Aceptor do Grupo Álcool) , Deleção de Sequência
20.
Clin Sci (Lond) ; 114(7): 479-87, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17956228

RESUMO

The aim of the present study was to investigate the relationship between homocysteine and homocysteine metabolism components and retinal microvascular disorders in subjects with and without Type 2 diabetes. In this population-based study of 256 participants, aged 60-85 years, we determined total plasma homocysteine, SAM (S-adenosylmethionine) and SAH (S-adenosylhomocysteine) in plasma and erythrocytes, total folate in serum and erythrocytes, 5-MTHF (5-methyltetrahydrofolate), and vitamins B12 and B6. Participants were examined ophthalmologically by means of indirect funduscopy and two-field 45 degrees fundus photography, and were graded for retinopathy and retinal sclerotic vessel abnormalities. A computer-assisted method was used to measure retinal vessel diameters. Total plasma homocysteine was inversely associated with retinal arteriolar diameters {standardized beta, -0.20 [95% CI (confidence interval), -0.33 to -0.07]} or a decrease of 3.78 microm CRAEs (central retinal arteriolar equivalents) per 1 S.D. increase in homocysteine level (=4.6 micromol/l). In addition, the SAM/SAH ratio in plasma was inversely associated with retinal sclerotic vessel abnormalities and retinopathy [odds ratios, 0.61 (95% CI, 0.39-0.96) and 0.50 (95% CI, 0.30-0.83) per 1 S.D. respectively]. The associations were independent of age, sex, glucose tolerance status, other homocysteine metabolism components and cardiovascular risk factors. In conclusion, the results of the present study support the concept that total plasma homocysteine and a low SAM/SAH ratio in plasma, which may reflect reduced transmethylation reactions, may contribute to the pathogenesis of (retinal) microangiopathy.


Assuntos
Homocisteína/sangue , Doenças Retinianas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Arteríolas/patologia , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Retinopatia Diabética/sangue , Retinopatia Diabética/patologia , Feminino , Ácido Fólico/sangue , Seguimentos , Teste de Tolerância a Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Retinianas/patologia , Vasos Retinianos/patologia , S-Adenosil-Homocisteína/sangue , S-Adenosilmetionina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA