Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
EJNMMI Res ; 14(1): 24, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436824

RESUMO

BACKGROUND: Correct classification of estrogen receptor (ER) status is essential for prognosis and treatment planning in patients with breast cancer (BC). Therefore, it is recommended to sample tumor tissue from an accessible metastasis. However, ER expression can show intra- and intertumoral heterogeneity. 16α-[18F]fluoroestradiol ([18F]FES) Positron Emission Tomography/Computed Tomography (PET/CT) allows noninvasive whole-body (WB) identification of ER distribution and is usually performed as a single static image 60 min after radiotracer injection. Using dynamic whole-body (D-WB) PET imaging, we examine [18F]FES kinetics and explore whether Patlak parametric images ( K i ) are quantitative and improve lesion visibility. RESULTS: This prospective study included eight patients with metastatic ER-positive BC scanned using a D-WB PET acquisition protocol. The kinetics of [18F]FES were best characterized by the irreversible two-tissue compartment model in tumor lesions and in the majority of organ tissues. K i values from Patlak parametric images correlated with K i values from the full kinetic analysis, r2 = 0.77, and with the semiquantitative mean standardized uptake value (SUVmean), r2 = 0.91. Furthermore, parametric K i images had the highest target-to-background ratio (TBR) in 162/164 metastatic lesions and the highest contrast-to-noise ratio (CNR) in 99/164 lesions compared to conventional SUV images. TBR was 2.45 (95% confidence interval (CI): 2.25-2.68) and CNR 1.17 (95% CI: 1.08-1.26) times higher in K i images compared to SUV images. These quantitative differences were seen as reduced background activity in the K i images. CONCLUSION: [18F]FES uptake is best described by an irreversible two-tissue compartment model. D-WB [18F]FES PET/CT scans can be used for direct reconstruction of parametric K i images, with superior lesion visibility and K i values comparable to K i values found from full kinetic analyses. This may aid correct ER classification and treatment decisions. Trial registration ClinicalTrials.gov: NCT04150731, https://clinicaltrials.gov/study/NCT04150731.

2.
Biomolecules ; 13(9)2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37759805

RESUMO

Estrogen receptors (ERs) play a multitude of roles in brain function and are implicated in various brain disorders. The use of positron emission tomography (PET) tracers for the visualization of ERs' intricate landscape has shown promise in oncology but remains limited in the context of brain disorders. Despite recent progress in the identification and development of more selective ligands for various ERs subtypes, further optimization is necessary to enable the reliable and efficient imaging of these receptors. In this perspective, we briefly touch upon the significance of estrogen signaling in the brain and raise the setbacks associated with the development of PET tracers for identification of specific ERs subtypes in the brain. We then propose avenues for developing efficient PET tracers to non-invasively study the dynamics of ERs in the brain, as well as neuropsychiatric diseases associated with their malfunction in a longitudinal manner. This perspective puts several potential candidates on the table and highlights the unmet needs and areas requiring further research to unlock the full potential of PET tracers for ERs imaging, ultimately aiding in deepening our understanding of ERs and forging new avenues for potential therapeutic strategies.


Assuntos
Encefalopatias , Receptores de Estrogênio , Humanos , Receptores de Estrogênio/metabolismo , Estradiol , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
3.
EJNMMI Radiopharm Chem ; 5(1): 14, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32542416

RESUMO

BACKGROUND: In vitro experiments using radiolabeled molecules is fundamental for Positron emission tomography (PET) or single photon emission computed tomography (SPECT) tracer development and various metabolic assays, but no consensus on appropriate incubation conditions exists. Specifically, the use of shaking versus non-shaking conditions, cell number to medium volume and the choice of cell plating material may unintentionally influence cellular oxygenation and medium composition. This is problematic when testing the oxygen-dependence of tracers including 18F-fluoro-2-deoxyglucose ([18F]FDG) and hypoxia-selective 2-nitroimidazoles (e.g., 18F-fluoroazomycin-arabinoside, [18F]FAZA) or when doing prolonged experiments. The purpose of this study was to assess the influence of various experimental conditions on tracer retention. METHODS: Tumor cells were seeded in a) Glass or standard Polystyrene Petri dishes or as b) discrete droplets in polystyrene Petri dishes or on 9 mm glass coverslips positioned in glass Petri dishes. When confluent, cells were pre-equilibrated for 2 h to 21%, 0.5% or 0% O2 and [18F] FDG or [18F] FAZA was added, followed by cell harvest and analysis of radioactivity 1 h ([18F]FDG) or 3 h ([18F]FAZA) after. Experiments were conducted with/without orbital shaking. RESULTS: The influence of hypoxia on tracer retention varied widely among cell lines, but shaking-induced convection did not influence uptake. In contrast, hypoxia-driven [18F] FAZA, and to some extent [18F] FDG, retention was much lower in cells grown on polyethylene than glass. Scaling-down the number of cells did not compromise accuracy. CONCLUSIONS: Tracer retention was similar under stagnant and forced convection conditions suggesting that the former approach may be appropriate even when accurate control of oxygen and tracer availability is required. In contrast, conventional plasticware should be used with caution when studying tracers and drugs that are metabolized and retained or activated at low O2 levels. Downscaling of cell number, by reducing the effective growth area, was feasible, without compromising accuracy.

4.
Breast Cancer Res Treat ; 181(1): 107-113, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32240455

RESUMO

PURPOSE: Epidemiological studies and randomized clinical trials suggest that the antidiabetic drug, metformin, may have anti-neoplastic effects. The mechanism that mediates these beneficial effects has been suggested to involve direct action on cancer cells, but this will require distribution of metformin in tumor tissue. The present study was designed to investigate metformin distribution in vivo in breast and liver tissue in breast cancer patients. METHODS: Seven patients recently diagnosed with ductal carcinoma were recruited. Using PET/CT, tissue distribution of metformin was determined in vivo for 90 min after injection of a carbon-11-labeled metformin tracer. After surgery, tumor tissue was investigated for gene expression levels of metformin transporter proteins. RESULTS: Tumor tissue displayed a distinct uptake of metformin compared to normal breast tissue AUC0-90 min (75.4 ± 5.5 vs 42.3 ± 6.3) g/ml*min (p = 0.01). Maximal concentration in tumor was at 1 min where it reached approximately 30% of the activity in the liver. The metformin transporter protein with the highest gene expression in tumor tissue was multidrug and toxin extrusion 1 (MATE 1) followed by plasma membrane monoamine transporter (PMAT). CONCLUSION: This study confirms that metformin is transported into tumor tissue in women with breast cancer. This finding support that metformin may have direct anti-neoplastic effects on tumor cells in breast cancer patients. However, distribution of metformin in tumor tissue is markedly lower than in liver, an established metformin target tissue.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Radioisótopos de Carbono/farmacocinética , Hipoglicemiantes/farmacocinética , Metformina/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Idoso , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Pessoa de Meia-Idade , Prognóstico , Distribuição Tecidual
5.
Acta Oncol ; 58(10): 1476-1482, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31432722

RESUMO

Introduction: Positron emission tomography (PET) using hypoxia-selective tracers like FAZA may guide radiation dose-escalation approaches. However, poor resolution combined with slow tracer retention in relatively inaccessible target cells and slow clearance of unbound tracer results in low-contrast images, and areas where viable hypoxic tracer retaining cells and necrosis (no tracer) are intermixed may pass unnoticed during image thresholding. Here we hypothesized that a clinical feasible one-day dual tracer approach that combines a short-lived (e.g., 11C labeled) metabolic tracer that provides voxel-wise information on viable tissue volume (preferably independently of tumor microenvironment) and a hypoxia marker, may limit threshold-based errors. Material and methods: 11C-acetate and 11C-methionine uptake was quantified in tumor cell lines under tumor microenvironment-mimicking conditions of high/low O2 (21%/0%) and pH (7.4/6.7). Next, tumor-bearing mice were administered FAZA and sacrificed 1 h (mimics a clinical low-contrast image scenario) or 4 h (high contrast) later. In addition, all mice were administered pimonidazole (hypoxia) and 14C-methionine 1 h prior to sacrifice. Tumor tissue sections were analyzed using dual-tracer autoradiography. Finally, FAZA, or FAZA normalized to 14C-methionine retention (to adjust for differences in viable tissue volume) was compared to hypoxic fraction (deduced from immune-histological analysis of pimonidazole; ground truth) in PET-mimicking macroscopic pixels with variable extent of necrosis/hypoxia. Results/conclusions: Low pH stimulated 11C-acetate retention in many cell lines, and uptake was further modified by anoxia, compromising its usefulness as a universal marker of viable tumor volume. In contrast, 11C-methionine was largely unaffected by the in vitro microenvironment and was further tested in mice. Necrosis increased the risk of missing hypoxia-containing pixels during thresholding and hypoxic fraction and FAZA signal correlated poorly in the low contrast-scenario. Voxel-based normalization to 14C-methionine increased the likelihood of detecting voxels harboring hypoxic cells profoundly, but did not consistently improve the correlation between the density of hypoxic cells and tracer signal.


Assuntos
Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Tolerância a Radiação , Compostos Radiofarmacêuticos/administração & dosagem , Carga Tumoral/efeitos da radiação , Animais , Autorradiografia/métodos , Hipóxia Celular/efeitos da radiação , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Necrose/diagnóstico por imagem , Neoplasias/patologia , Neoplasias/radioterapia , Nitroimidazóis/administração & dosagem , Microambiente Tumoral/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Br J Clin Pharmacol ; 85(8): 1761-1770, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30973968

RESUMO

AIMS: Metformin is first-line treatment of type 2 diabetes mellitus and reduces cardiovascular events in patients with insulin resistance and type 2 diabetes. Target tissue for metformin action is thought to be the liver, where metformin distribution depends on facilitated transport by polyspecific transmembrane organic cation transporters (OCTs). Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the western world with strong associations to insulin resistance and the metabolic syndrome, but whether NAFLD affects metformin biodistribution to the liver is not known. In this study, the primary aim was to investigate in vivo hepatic uptake of metformin dynamically in humans with variable degrees of liver affection. As a secondary aim, we wished to correlate hepatic metformin distribution with OCT gene transcription determined in diagnostic liver biopsies. METHODS: Eighteen patients with biopsy-proven NAFLD were investigated using 11C-metformin PET/CT technique. Gene transcripts of OCTs were determined by real-time polymerase chain reaction (PCR). RESULTS: We observed similar hepatic volume of distribution of metformin between patients with simple steatosis and non-alcoholic steatohepatitis (NASH) (Vd 2.38 ± 0.56 vs. 2.10 ± 0.39, P = 0.3). There was no association between hepatic exposure to metformin and the degree of inflammation or fibrosis, and no clear correlation between metformin distribution and OCT gene transcription. CONCLUSION: Metformin is distributed to the liver in patients with NAFLD and the distribution is not impaired by inflammation or fibrosis. The findings imply that metformin action in liver in patients with NAFLD may be preserved.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Fígado/metabolismo , Metformina/farmacocinética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Idoso , Biópsia , Radioisótopos de Carbono , Diabetes Mellitus Tipo 2/etiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Hipoglicemiantes/administração & dosagem , Fígado/patologia , Masculino , Metformina/administração & dosagem , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual
7.
Synapse ; 72(12): e22060, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30009467

RESUMO

Parkinson's disease is characterized by a progressive loss of substantia nigra (SN) dopaminergic neurons and the formation of Lewy bodies containing accumulated alpha-synuclein (α-syn). The pathology of Parkinson's disease is associated with neuroinflammatory microglial activation, which may contribute to the ongoing neurodegeneration. This study investigates the in vivo microglial and dopaminergic response to overexpression of α-syn. We used positron emission tomography (PET) and the 18 kDa translocator protein radioligand, [11 C](R)PK11195, to image brain microglial activation and (+)-α-[11 C]dihydrotetrabenazine ([11 C]DTBZ), to measure vesicular monoamine transporter 2 (VMAT2) availability in Göttingen minipigs following injection with recombinant adeno-associated virus (rAAV) vectors expressing either mutant A53T α-syn or green fluorescent protein (GFP) into the SN (4 rAAV-α-syn, 4 rAAV-GFP, 5 non-injected control minipigs). We performed motor symptom assessment and immunohistochemical examination of tyrosine hydroxylase (TH) and transgene expression. Expression of GFP and α-syn was observed at the SN injection site and in the striatum. We observed no motor symptoms or changes in striatal [11 C]DTBZ binding potential in vivo or striatal or SN TH staining in vitro between the groups. The mean [11 C](R)PK11195 total volume of distribution was significantly higher in the basal ganglia and cortical areas of the α-syn group than the control animals. We conclude that mutant α-syn expression in the SN resulted in microglial activation in multiple sub- and cortical regions, while it did not affect TH stains or VMAT2 availability. Our data suggest that microglial activation constitutes an early response to accumulation of α-syn in the absence of dopamine neuron degeneration.


Assuntos
Neuroglia/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , Amidas , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Feminino , Células HEK293 , Humanos , Isoquinolinas , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Suínos , Porco Miniatura , Tetrabenazina/análogos & derivados , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , alfa-Sinucleína/metabolismo
8.
Diabetes Obes Metab ; 20(9): 2264-2273, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29752759

RESUMO

AIMS: To test the hypothesis that brown adipose tissue (BAT) is a metformin target tissue by investigating in vivo uptake of [11 C]-metformin tracer in mice and studying in vitro effects of metformin on cultured human brown adipocytes. MATERIALS AND METHODS: Tissue-specific uptake of metformin was assessed in mice by PET/CT imaging after injection of [11 C]-metformin. Human brown adipose tissue was obtained from elective neck surgery and metformin transporter expression levels in human and murine BAT were determined by qPCR. Oxygen consumption in metformin-treated human brown adipocyte cell models was assessed by Seahorse XF technology. RESULTS: Injected [11 C]-metformin showed avid uptake in the murine interscapular BAT depot. Metformin exposure in BAT was similar to hepatic exposure. Non-specific inhibition of the organic cation transporter (OCT) protein by cimetidine administration eliminated BAT exposure to metformin, demonstrating OCT-mediated uptake. Gene expression profiles of OCTs in BAT revealed ample OCT3 expression in both human and mouse BAT. Incubation of a human brown adipocyte cell models with metformin reduced cellular oxygen consumption in a dose-dependent manner. CONCLUSION: These results support BAT as a putative metformin target.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Hipoglicemiantes/farmacocinética , Metformina/farmacocinética , Consumo de Oxigênio/efeitos dos fármacos , Animais , Cimetidina/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Transcriptoma
9.
Acta Oncol ; 56(11): 1583-1590, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28840765

RESUMO

BACKGROUND: Static positron emission tomography (PET) allows mapping of tumor hypoxia, but low resolution and slow tracer retention/clearance results in poor image contrast and the risk of missing areas where hypoxic cells and necrosis are intermixed. Fully dynamic PET may improve accuracy but scan protocols suitable for routine clinical use are warranted. A modeling study proposed that hypoxia specificity can be improved by a clinically feasible blood-flow normalization procedure that only requires a 10- to 15-min dynamic scan (perfusion), followed by a short late static scan, but experimental validation is desired. METHODS: Tumor-bearing mice were administered pimonidazole (hypoxia marker) and the PET hypoxia-tracer 18F-azomycin arabinoside (FAZA) and scanned for 3h. Subsequently, the distributions of FAZA (autoradiography) and hypoxic cells (pimonidazole) were compared on tissue sections. PET images collected in 10-min time intervals between 60 and 90 min post-injection (PETearly), which mimics the image contrast seen in patients, were compared voxel-by-voxel to 3-h PET (PETlate). For comparison, PETearly was normalized to the perfusion peak area, deduced from the first 10 min of the scan (PETperf), and the resulting parameter PETearly/PETperf was compared with PETlate. RESULTS: Tissue analysis revealed a near-perfect spatial match between FAZA signal and hypoxic cell density (pimonidazole) 3 h post-injection, regardless of the tumor type. Only a weak inverse or no correlation between PETperf and PETlate was seen, and the correlation between PETearly/PETperf and PETlate proved inferior to the correlation between PETearly and PETlate. CONCLUSIONS: Late PET scans in rodents, unlike patients, provide an accurate map of hypoxia against which earlier time-point scans can be compared. PETearly and PETlate correlated to a variable extent but the correlation was lowered by normalization to perfusion (PETearly/PETperf). Our study challenges the validity/robustness of a perfusion normalization approach. This may reflect that the chaotic tumor vasculature uncouples microregional blood flow and oxygen extraction.


Assuntos
Hipóxia/patologia , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos/metabolismo , Neoplasias do Colo do Útero/diagnóstico por imagem , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Nus , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 7(1): 9436, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842630

RESUMO

The anti-diabetic biguanide drugs metformin (METF) and phenformin (PHEN) may have anti-cancer effects. Biguanides suppress plasma growth factors, but nonetheless, the view that these mitochondrial inhibitors accumulate in tumor tissue to an extent that leads to severe energetic stress or alleviation of hypoxia-induced radioresistance is gaining ground. Our cell studies confirm that biguanides inhibits cell proliferation by targeting respiration, but only at highly suprapharmacological concentrations due to low drug retention. Biodistribution/PET studies of 11C-labeled metformin (11C-METF) revealed that plasma bioavailability remained well below concentrations with metabolic/anti-proliferative in vitro effects, following a high oral dose. Intraperitoneal administration resulted in higher drug concentrations, which affected metabolism in normal organs with high METF uptake (e.g., kidneys), but tumor drug retention peaked at low levels comparable to plasma levels and hypoxia was unaffected. Prolonged intraperitoneal treatment reduced tumor growth in two tumor models, however, the response did not reflect in vitro drug sensitivity, and tumor metabolism and hypoxia was unaffected. Our results do not support that direct inhibition of tumor cell respiration is responsible for reduced tumor growth, but future studies using 11C-METF-PET are warranted, preferably in neoplasia's originating from tissue with high drug transport capacity, to investigate the controversial idea of direct targeting.


Assuntos
Radioisótopos de Carbono , Metformina , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Biguanidas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Modelos Animais de Doenças , Glucose/metabolismo , Xenoenxertos , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Hipóxia/metabolismo , Metformina/química , Metformina/farmacocinética , Camundongos , Neoplasias/patologia , Tomografia por Emissão de Pósitrons/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual , Microambiente Tumoral/efeitos dos fármacos
11.
Sci Rep ; 7(1): 6363, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743955

RESUMO

Evidence suggests that synapses are affected first in Parkinson's disease (PD). Here, we tested the claim that pathological accumulation of α-synuclein, and subsequent synaptic disruption, occur in absence of dopaminergic neuron loss in PD. We determined early synaptic changes in rats that overexpress human α-synuclein by local injection of viral-vectors in midbrain. We aimed to achieve α-synuclein levels sufficient to induce terminal pathology without significant loss of nigral neurons. We tested synaptic disruption in vivo by analyzing motor defects and binding of a positron emission tomography (PET) radioligand to the vesicular monoamine transporter 2, (VMAT2), [11C]dihydrotetrabenazine (DTBZ). Animals overexpressing α-synuclein had progressive motor impairment and, 12 weeks post-surgery, showed asymmetric in vivo striatal DTBZ binding. The PET images matched ligand binding in post-mortem tissue, and histological markers of dopaminergic integrity. Histology confirmed the absence of nigral cell death with concomitant significant loss of striatal terminals. Progressive aggregation of proteinase-K resistant and Ser129-phosphorylated α-synuclein was observed in dopaminergic terminals, in dystrophic swellings that resembled axonal spheroids and contained mitochondria and vesicular proteins. In conclusion, pathological α-synuclein in nigro-striatal axonal terminals leads to early axonal pathology, synaptic disruption, dysfunction of dopaminergic neurotransmission, motor impairment, and measurable change of VMAT2 in the absence of cell loss.


Assuntos
Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Terminações Pré-Sinápticas/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais , Radioisótopos de Carbono/administração & dosagem , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Tomografia por Emissão de Pósitrons , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Transgênicos , Substância Negra/diagnóstico por imagem , Substância Negra/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Tetrabenazina/administração & dosagem , Tetrabenazina/análogos & derivados , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
12.
Acta Oncol ; 56(5): 706-712, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28094665

RESUMO

BACKGROUND: Current [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) procedures in tumor-bearing mice typically includes fasting, anesthesia, and standardized uptake value (SUV)-based quantification. Such procedures may be inappropriate for prolonged multiscan experiments. We hypothesize that normalization of tumor FDG retention relative to a suitable reference tissue may improve accuracy as this method may be less susceptible to uncontrollable day-to-day changes in blood glucose levels, physical activity, or unnoticed imperfect tail vein injections. MATERIAL AND METHODS: Fed non-anesthetized tumor-bearing mice were administered FDG intravenously (i.v.) or intraperitoneally (i.p.) and PET scanned on consecutive days using a Mediso nanoScan PET/magnetic resonance imaging (MRI). Reproducibility of various PET-deduced measures of tumor FDG retention, including normalization to FDG signal in reference organs and a conventional SUV approach, was evaluated. RESULTS: Day-to-day variability in i.v. injected mice was lower when tumor FDG retention was normalized to brain signal (T/B), compared to normalization to other tissues or when using SUV-based normalization. Assessment of tissue radioactivity in dissected tissues confirmed the validity of PET-derived T/B ratios. Mean T/B and SUV values were similar in i.v. and i.p. administered animals, but SUV normalization was more robust in the i.p. group than in the i.v. group. CONCLUSIONS: Multimodality scanners allow tissue delineation and normalization of tumor FDG uptake relative to reference tissues. Normalization to brain, but not liver or kidney, improved scan reproducibility considerably and was superior to traditional SUV quantification in i.v. tracer-injected animals. Day-to-day variability in SUV's was lower in i.p. than in i.v. injected animals, and i.p. injections may therefore be a valuable alternative in prolonged rodent studies, where repeated vein injections are undesirable.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Fluordesoxiglucose F18/metabolismo , Neoplasias Mamárias Animais/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Feminino , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Cintilografia
13.
Eur J Nucl Med Mol Imaging ; 44(3): 449-458, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27785538

RESUMO

INTRODUCTION: Immune cells utilize acetylcholine as a paracrine-signaling molecule. Many white blood cells express components of the cholinergic signaling pathway, and these are up-regulated when immune cells are activated. However, in vivo molecular imaging of cholinergic signaling in the context of inflammation has not previously been investigated. METHODS: We performed positron emission tomography (PET) using the glucose analogue 18F-FDG, and 11C-donepezil and 18F-FEOBV, markers of acetylcholinesterase and the vesicular acetylcholine transporter, respectively. Mice were inoculated subcutaneously with Staphylococcus aureus, and PET scanned at 24, 72, 120, and 144 h post-inoculation. Four pigs with post-operative abscesses were also imaged. Finally, we present initial data from human patients with infections, inflammation, and renal and lung cancer. RESULTS: In mice, the FDG uptake in abscesses peaked at 24 h and remained stable. The 11C-donepezil and 18F-FEOBV uptake displayed progressive increase, and at 120-144 h was nearly at the FDG level. Moderate 11C-donepezil and slightly lower 18F-FEOBV uptake were seen in pig abscesses. PCR analyses suggested that the 11C-donepezil signal in inflammatory cells is derived from both acetylcholinesterase and sigma-1 receptors. In humans, very high 11C-donepezil uptake was seen in a lobar pneumonia and in peri-tumoral inflammation surrounding a non-small cell lung carcinoma, markedly superseding the 18F-FDG uptake in the inflammation. In a renal clear cell carcinoma no 11C-donepezil uptake was seen. DISCUSSION: The time course of cholinergic tracer accumulation in murine abscesses was considerably different from 18F-FDG, demonstrating in the 11C-donepezil and 18F-FEOBV image distinct aspects of immune modulation. Preliminary data in humans strongly suggest that 11C-donepezil can exhibit more intense accumulation than 18F-FDG at sites of chronic inflammation. Cholinergic PET imaging may therefore have potential applications for basic research into cholinergic mechanisms of immune modulation, but also clinical applications for diagnosing infections, inflammatory disorders, and cancer inflammation.


Assuntos
Inibidores da Colinesterase/farmacocinética , Indanos/farmacocinética , Piperidinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Infecções Estafilocócicas/diagnóstico por imagem , Acetilcolinesterase/metabolismo , Adulto , Idoso , Animais , Radioisótopos de Carbono , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma de Células Renais/diagnóstico por imagem , Donepezila , Feminino , Fluordesoxiglucose F18 , Humanos , Neoplasias Renais/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Suínos , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
14.
Eur J Nucl Med Mol Imaging ; 43(5): 906-910, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26227535

RESUMO

PURPOSE: High-grade prostate cancer (PC) displays parasympathetic neoneurogenesis. We investigated the binding of two PET tracers that visualize cholinergic nerves in PC tissue using autoradiography. METHODS: Prostatectomy tissue was subjected to autoradiography with (11)C-donepezil and (18)F-FEOBV and correlated with Gleason scores (GS). Regions of interest on the autoradiograms were defined and quantified. Tracer binding in cancer tissue regions was compared with that in normal tissue. RESULTS: We included 13 patients with biopsy-verified PC. In particular, (11)C-donepezil uptake was higher in "high-grade" PC (GS ≥4 + 3) than in "low-grade" PC and benign hyperplasia. (11)C-donepezil uptake ranged from a mean of 56 % higher (GS 3 + 3) to 409 % higher (GS 4 + 4), and (18)F-FEOBV uptake ranged from 67 % higher (GS 3 + 3) to 194 % higher (GS 4 + 5). The uptake of both tracers was higher in PC with a high GS than in PC with a low GS, but the difference was significant only for (11)C-donepezil (p = 0.003). CONCLUSION: Uptake of PET tracers binding to cholinergic nerves was markedly higher in PC with a high GS than in PC with a low GS. This finding implies that (11)C-donepezil PET/CT may be able to differentiate between low-grade and high-grade PC.


Assuntos
Inibidores da Colinesterase , Indanos , Piperidinas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos , Idoso , Radioisótopos de Carbono , Donepezila , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias da Próstata/patologia , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
15.
J Nucl Med ; 55(11): 1818-24, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25324520

RESUMO

UNLABELLED: Brain cholinergic function has been previously studied with PET but little effort has been devoted to imaging peripheral organs. Many disorders, including diabetes and Parkinson disease, are associated with autonomic dysfunction including parasympathetic denervation. Nonneuronal cholinergic signaling is also involved in immune responses to infections and in cancer pathogenesis. 5-(11)C-methoxy-donepezil, a noncompetitive acetylcholinesterase ligand, was previously validated for imaging cerebral levels of acetylcholinesterase. In the present study, we explored the utility of (11)C-donepezil for imaging acetylcholinesterase densities in peripheral organs, including the salivary glands, heart, stomach, intestine, pancreas, liver, and spleen. METHODS: With autoradiography, we determined binding affinities and levels of nonspecific (11)C-donepezil binding to porcine tissues. Radiation dosimetry was estimated by whole-body PET of a single human volunteer. Biodistribution and kinetic analyses of (11)C-donepezil time-activity curves were assessed with dynamic PET scans of 6 healthy human volunteers. A single pig with bacterial abscesses was PET-scanned to explore (11)C-donepezil uptake in infections. RESULTS: Autoradiography showed high (11)C-donepezil binding (dissociation constant, 6-39 nM) in pig peripheral organs with low nonspecific signal. Radiation dosimetry was favorable (effective dose, 5.2 µSv/MBq). Peripheral metabolization of (11)C-donepezil was low (>90% unchanged ligand at 60 min). Slow washout kinetics were seen in the salivary glands, heart, intestines, pancreas, and prostate. A linear correlation was seen between (11)C-donepezil volumes of distribution and standardized uptake values, suggesting that arterial blood sampling may not be necessary for modeling uptake kinetics in future (11)C-donepezil PET studies. High standardized uptake values and slow washout kinetics were seen in bacterial abscesses. CONCLUSION: (11)C-donepezil PET is suitable for imaging acetylcholinesterase densities in peripheral organs. Its uptake may potentially be quantitated with static whole-body PET scans not requiring arterial blood sampling. We also demonstrated high (11)C-donepezil binding in bacterial abscesses. We propose that (11)C-donepezil PET imaging may be able to quantify the parasympathetic innervation of organs but also detect nonneuronal cholinergic activity in infections.


Assuntos
Acetilcolinesterase/metabolismo , Radioisótopos de Carbono/farmacocinética , Indanos/farmacocinética , Piperidinas/farmacocinética , Idoso , Animais , Autorradiografia , Diagnóstico por Imagem , Donepezila , Feminino , Voluntários Saudáveis , Humanos , Cinética , Ligantes , Masculino , Pessoa de Meia-Idade , Sistema Nervoso Parassimpático/patologia , Tomografia por Emissão de Pósitrons , Radiometria , Suínos , Fatores de Tempo , Distribuição Tecidual , Imagem Corporal Total
16.
Acta Oncol ; 52(7): 1300-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23962243

RESUMO

BACKGROUND: Tumor hypoxia contributes to loco-regional failure, and for optimal treatment planning, knowledge about tumor hypoxia in individual patients is required. Nitroimidazole-based tracers, which are retained in hypoxic cells, allow PET-based assessment of tumor hypoxia, but current tracers are characterized by slow tracer retention and clearance, resulting in low inter-tissue contrast. Pimonidazole is an immune detectable hypoxia marker widely used for detection of hypoxia in tumor samples. Pimonidazole has excellent chemical properties for hypoxia imaging, but labeling for non- invasive assay has not been attempted. Here we labeled pimonidazole with (18)F ([(18)F]FPIMO). MATERIAL AND METHODS: [(18)F]FPIMO was produced by fluorination of 1-[2-O-tosyl-3-(2-nitroimidazole-1-yl)-propyl]-piperidine, which resulted in two isomeric interchangeable forms (named "5" and "6") with a radiochemical purity of 91-100%. [(18)F]FPIMO was tested by incubation of two different tumor cell lines at high and low oxygen levels. [(18)F]FPIMO was also administered to tumor-bearing mice and tracer retention in tumors, non-hypoxic reference tissues and tissues involved in drug metabolism/clearance was evaluated by various techniques. RESULTS AND CONCLUSIONS: Retention of [(18)F]FPIMO was strongly hypoxia-driven in vitro, but isomeric form "5" was particularly promising and reached impressive anoxic-to-oxic retention ratios of 36 and 102, in FaDuDD and SiHa cells, respectively, following three hours of tracer incubation. This was equal to or higher than ratios measured using the established hypoxia tracer [(18)F]FAZA. [(18)F]FPIMO also accumulated in tumors grown in mice, and reached tumor levels that were two to six-fold higher than in muscle three hours post-administration. Furthermore, the intra-tumoral distribution of [(18)F]FPIMO (autoradiography) and unlabeled pimonidazole (immunohistochemistry) was largely identical. Nonetheless, [(18)F]FPIMO proved inferior to [(18)F]FAZA, since absolute tumor signal and intra-tumoral contrast was low, thus compromising PET imaging. Low tumor signal was coupled to extensive tracer accumulation in liver and kidneys, and analysis of blood metabolites revealed that [(18)F]FPIMO was metabolized rapidly, with little parent compound remaining 15 minutes post-administration. Ongoing work focuses on the possibility of labeling pimonidazole in different positions with (18)F to improve tracer stability in vivo.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Hipóxia/diagnóstico por imagem , Neoplasias Mamárias Animais/diagnóstico por imagem , Nitroimidazóis , Tomografia por Emissão de Pósitrons , Animais , Carcinoma de Células Escamosas/complicações , Carcinoma de Células Escamosas/patologia , Feminino , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Hipóxia/etiologia , Hipóxia/patologia , Neoplasias Mamárias Animais/complicações , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Nus , Radiossensibilizantes , Compostos Radiofarmacêuticos , Células Tumorais Cultivadas
17.
J Nucl Med ; 54(1): 139-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23223380

RESUMO

UNLABELLED: Changes in the density of imidazoline-I(2) binding sites have been observed in a range of neurologic disorders including Alzheimer's disease, Huntington's chorea, and glial tumor; however, the precise function of these sites remains unclear. A PET probe for I(2) binding sites would further our understanding of the target and may find application as a biomarker for early disease diagnosis. Compound BU99008 has previously been identified as a promising I(2) ligand from autoradiography studies, displaying high affinity and good selectivity toward the target. In this study, BU99008 was radiolabeled with (11)C in order to image the I(2) binding sites in vivo using PET. METHODS: (11)C-BU99008 was radiolabeled by N-alkylation of the desmethyl precursor using (11)C-methyl iodide. A series of PET experiments was performed to investigate the binding of (11)C-BU99008 in porcine brains, in the presence or absence of a nonradiolabeled, competing I(2) ligand, BU224. RESULTS: (11)C-BU99008 was obtained in good yield and specific activity. In vivo, (11)C-BU99008 displayed good brain penetration and gave a heterogeneous distribution with high uptake in the thalamus and low uptake in the cortex and cerebellum. (11)C-BU99008 brain kinetics were well described by the 1-tissue-compartment model, which was used to provide estimates for the total volume of distribution (V(T)) across brain regions of interest. Baseline V(T) values were ranked in the following order: thalamus > striatum > hippocampus > frontal cortex ≥ cerebellum, consistent with the known distribution and concentration of I(2) binding sites. Administration of a selective I(2) binding site ligand, BU224, reduced the V(T) to near-homogeneous levels in all brain regions. CONCLUSION: (11)C-BU99008 appears to be a suitable PET radioligand for imaging the I(2) binding sites in vivo.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imidazóis , Imidazolinas/metabolismo , Indóis , Tomografia por Emissão de Pósitrons/métodos , Animais , Sítios de Ligação , Radioisótopos de Carbono , Imidazóis/sangue , Imidazóis/química , Imidazóis/metabolismo , Indóis/sangue , Indóis/química , Indóis/metabolismo , Cinética , Ligantes , Radioquímica , Suínos
18.
Radiother Oncol ; 105(1): 14-20, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23083497

RESUMO

PURPOSE: Hypoxia is a cause of resistance to radiotherapy, especially in patients with head and neck squamous cell carcinoma (HNSCC). The purpose of this study was to evaluate (18)F-fluoroazomycin arabinoside (FAZA) positron emission tomography (PET)/computed tomography (CT) hypoxia imaging as a prognostic factor in HNSCC patients receiving radiotherapy. MATERIAL AND METHODS: Forty patients with HNSCC treated with radiotherapy (66-76 Gy) were included. Static FAZA PET/CT imaging 2h post injection was conducted prior to irradiation. The hypoxic volume (HV) was delineated using a tumor-to-muscle value ≥ 1.4. In 13 patients, a repetitive FAZA PET/CT scan was conducted during the radiotherapy treatment. RESULTS: A hypoxic volume could be identified in 25 (63%) of the 40 tumors. FAZA PET HV varied considerably with a range from 0.0 to 30.9 (median: 0.3) cm(3). The T(max)/M(med) ranged from 1.1 to 2.9 (median: 1.5). The distribution of hypoxia among the Human Papillomavirus (HPV) positive (12/16) and negative (13/24) tumors was not significant different. In the FAZA PET/CT scans performed during radiotherapy, hypoxia could be detected in six of the 13 patients. For these six patients the location of HV remained stable in location during radiotherapy treatment, though the size of the HV decreased. In 30 patients a positive correlation was detected between maximum FAZA uptake in the primary tumor and the lymph node. During a median follow up of 19 months a significant difference in disease free survival rate with 93% for patients with non hypoxic tumors and 60% for patients with hypoxic tumors could be detected. CONCLUSION: This study emphasizes the role of FAZA PET/CT imaging as a suitable assay with prognostic potential for detection of hypoxia in HNSCC.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/radioterapia , Hipóxia Celular/fisiologia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/mortalidade , Feminino , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Linfonodos/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Nitroimidazóis , Tomografia por Emissão de Pósitrons , Prognóstico , Tomografia Computadorizada por Raios X
19.
Radiother Oncol ; 99(3): 418-23, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21723634

RESUMO

PURPOSE: Tumor hypoxia is a known cause of resistance to radiotherapy. The aim of this study was to investigate the prognostic value of hypoxia measured by (18)F-fluoroazomycin arabinoside ((18)F-FAZA) PET or the Eppendorf oxygen electrode in a pre-clinical tumor model. MATERIAL/METHODS: Pretreatment (18)F-FAZA PET scans and blood sampling was conducted in 92 Female CDF1 mice with subcutaneous C3H mammary carcinomas grown in the right foot. Similarly, oxygenation status of 80 equivalent tumors was assessed using an invasive oxygen sensitive electrode. Tumors were then irradiated with a single dose of 55 Gy and local tumor control up to 90 days after the treatment was determined. RESULTS: A significant difference in local tumor control between "more hypoxic" or "less hypoxic" groups separated either by a median (18)F-FAZA PET determined tumor-to-blood ratio (P=0.007; hazard ratio, HR=0.21 [95% CI: 0.06-0.74]), or the fraction of oxygen partial pressure (pO(2)) values ≤2.5 mmHg (P=0.018; HR=0.31 [95% CI: 0.11-0.87]), was found. Both assays showed that the more hypoxic tumors had significantly lower tumor control. CONCLUSION: (18)F-FAZA PET analysis showed that pre treatment tumor hypoxia was prognostic of radiation response. Similar results were obtained when oxygenation status was assessed by the Eppendorf pO(2) Histograph. The results of this study support the role of (18)F-FAZA as a non-invasive prognostic marker for tumor hypoxia.


Assuntos
Radioisótopos de Flúor , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/radioterapia , Nitroimidazóis , Tomografia por Emissão de Pósitrons/métodos , Animais , Hipóxia Celular , Modelos Animais de Doenças , Eletrodos , Feminino , Camundongos , Prognóstico , Tolerância a Radiação
20.
Radiother Oncol ; 99(3): 404-11, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21704401

RESUMO

BACKGROUND AND PURPOSE: Tumor cells are recognized as being highly glycolytic. However, recently it was suggested that lactate produced in hypoxic tumor areas may be taken up by the monocarboxylate transporter MCT1 and oxidized in well-oxygenated tumor parts. Furthermore, it was shown that inhibition of lactate oxidation using the MCT1 inhibitor α-cyano-hydroxycinnamate (CHC) can radio-sensitize tumors possibly by forcing a switch from lactate oxidization to glycolysis in oxygenated cells, which in turn improves tumor oxygenation and indirectly kills radio-resistant hypoxic tumor cells from glucose starvation. MATERIAL AND METHODS: To provide direct evidence for the existence of a targetable energetic symbiosis, mice bearing SiHa or FaDu(dd) tumors were treated with CHC for different time periods. One hour prior to sacrifice, mice were administered with the glucose analog fluorodeoxyglucose (FDG) and the hypoxia-marker pimonidazole. Tumor cryosections were analyzed for regional glucose retention (FDG autoradiograms), hypoxia (pimonidazole retention) and glucose and lactate levels (bioluminescence imaging). RESULTS: Treatment did not influence metabolite concentrations, necrosis or extent of hypoxia, but pixel-by-pixel analysis comparing FDG retention and hypoxia (a measure of the apparent in vivo Pasteur effect) showed that CHC treatment caused a transient reduction in the Pasteur effect in FaDu(dd) 1.5 h following CHC administration whereas a reduction was only observed in SiHa following repeated treatments. CONCLUSIONS: In summary, our data show that CHC is able to influence the intratumoral distribution of glucose use between hypoxic and non-hypoxic tumor areas. That is in accordance with a functional tumor lactate-shuttle, but the absence of any detectable changes in hypoxic extent and tissue metabolites was unexpected and warrants further investigation.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Cinamatos/farmacologia , Glucose/metabolismo , Lactatos/metabolismo , Animais , Autorradiografia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Feminino , Fluordesoxiglucose F18/farmacocinética , Glicólise/fisiologia , Neoplasias de Cabeça e Pescoço/metabolismo , Técnicas Imunoenzimáticas , Modelos Lineares , Medições Luminescentes , Camundongos , Camundongos Nus , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Nitroimidazóis/farmacologia , Oxirredução , Simportadores/antagonistas & inibidores , Microambiente Tumoral , Neoplasias do Colo do Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA