Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 17(834): eadj6603, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687825

RESUMO

The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.


Assuntos
Hipocampo , Peptídeos e Proteínas de Sinalização Intracelular , Plasticidade Neuronal , Fosfoproteínas , Proteínas Serina-Treonina Quinases , Receptores de AMPA , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Masculino , Humanos , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Camundongos , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Via de Sinalização Hippo , Serina-Treonina Quinase 3 , Transdução de Sinais , Memória/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Fator de Crescimento de Hepatócito/metabolismo , Camundongos Endogâmicos C57BL , Doença de Alzheimer/metabolismo , Fosforilação , Neurônios/metabolismo
2.
Epigenetics Chromatin ; 16(1): 42, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880732

RESUMO

Cell-cell communication is mediated by membrane receptors and their ligands, such as the Eph/ephrin system, orchestrating cell migration during development and in diverse cancer types. Epigenetic mechanisms are key for integrating external "signals", e.g., from neighboring cells, into the transcriptome in health and disease. Previously, we reported ephrinA5 to trigger transcriptional changes of lncRNAs and protein-coding genes in cerebellar granule cells, a cell model for medulloblastoma. LncRNAs represent important adaptors for epigenetic writers through which they regulate gene expression. Here, we investigate a lncRNA-mediated targeting of DNMT1 to specific gene loci by the combined power of in silico modeling of RNA/DNA interactions and wet lab approaches, in the context of the clinically relevant use case of ephrinA5-dependent regulation of cellular motility of cerebellar granule cells. We provide evidence that Snhg15, a cancer-related lncRNA, recruits DNMT1 to the Ncam1 promoter through RNA/DNA triplex structure formation and the interaction with DNMT1. This mediates DNA methylation-dependent silencing of Ncam1, being abolished by ephrinA5 stimulation-triggered reduction of Snhg15 expression. Hence, we here propose a triple helix recognition mechanism, underlying cell motility regulation via lncRNA-targeted DNA methylation in a clinically relevant context.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , DNA , Movimento Celular
3.
Addict Biol ; 26(2): e12887, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32124535

RESUMO

Several studies in humans and rodents suggest an association between impulsivity and activity of the stress response on the one hand and addiction vulnerability on the other. The neural cell adhesion molecule (NCAM) has been related to several neuropsychiatric disorders in humans. Constitutively NCAM-deficient (-/-) mice display enhanced novelty-induced behavior and hyperfunction of the hypothalamic-pituitary-adrenal axis. Here we hypothesize that NCAM deficiency causes an altered response to cocaine. Cocaine-induced behaviors of NCAM-/- mice and wild-type (+/+) littermates were analyzed in the conditioned place preference (CPP) test. c-fos mRNA levels were investigated by quantitative polymerase chain reaction (qPCR) to measure neural activation after exposure to the cocaine-associated context. NCAM-/- mice showed an elevated cocaine-induced sensitization, enhanced CPP, impaired extinction, and potentiated cocaine-induced hyperlocomotion and CPP after extinction. NCAM-/- showed no potentiated CPP as compared with NCAM+/+ littermates when a natural rewarding stimulus (ie, an unfamiliar female) was used, suggesting that the behavioral alterations of NCAM-/- mice observed in the CPP test are specific to the effects of cocaine. Activation of the prefrontal cortex and nucleus accumbens induced by the cocaine-associated context was enhanced in NCAM-/- compared with NCAM+/+ mice. Finally, cocaine-induced behavior correlated positively with novelty-induced behavior and plasma corticosterone levels in NCAM-/- mice and negatively with NCAM mRNA levels in the hippocampus and nucleus accumbens in wild-type mice. Our findings indicate that NCAM deficiency affects cocaine-induced CPP in mice and support the view that hyperfunction of the stress response system and reactivity to novelty predict the behavioral responses to cocaine.


Assuntos
Cocaína/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Animais , Condicionamento Clássico , Corticosterona/sangue , Genes fos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , RNA Mensageiro
4.
Endocr Connect ; 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352410

RESUMO

OBJECTIVE: Patients with non-functioning pituitary adenomas exhibit high morbidity and mortality rates. Growth hormone deficiency and high doses of glucocorticoid substitution therapy have been identified as corresponding risk factors. Interestingly, high levels of endogenous cortisol in, e.g., patients with post-traumatic stress disorder or patients with Cushing's disease have been linked to shorter telomere length. Telomeres are noncoding DNA regions located at the end of chromosomes consisting of repetitive DNA sequences which shorten with ageing and hereby determine cell survival. Therefore, telomere length can serve as a predictor for the onset of disease and mortality in some endocrine disorders (e.g., Cushing's disease). DESIGN/METHODS: We examine telomere length from blood in patients (n = 115) with non-functioning pituitary adenomas (NFPA) in a cross-sectional case control (n = 106, age-, gender- matched) study using qPCR. Linear regression models were used to identify independent predictors of telomere length. RESULTS: We show that patients with NFPA exhibited shorter telomeres than controls. No significant association of indices of growth hormone deficiency (IGF-1-level-SDS, years of unsubstituted growth hormone deficiency etc.) with telomere length was detected. Interestingly, linear regression analysis showed that hydrocortisone replacement dosage in patients with adrenal insufficiency (n = 52) was a significant predictor for shorter telomere length (ß = 0.377; p = 0.018) independent of potential confounders. Median split analysis revealed that higher hydrocortisone intake (> 20 mg) was associated with significantly shorter telomeres. CONCLUSION: These observations strengthen the importance of adjusted glucocorticoid treatment in NFPA patients with respect to morbidity and mortality rates.

5.
Neuron ; 99(2): 389-403.e9, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30048615

RESUMO

N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are abundant mRNA modifications that regulate transcript processing and translation. The role of both, here termed m6A/m, in the stress response in the adult brain in vivo is currently unknown. Here, we provide a detailed analysis of the stress epitranscriptome using m6A/m-seq, global and gene-specific m6A/m measurements. We show that stress exposure and glucocorticoids region and time specifically alter m6A/m and its regulatory network. We demonstrate that deletion of the methyltransferase Mettl3 or the demethylase Fto in adult neurons alters the m6A/m epitranscriptome, increases fear memory, and changes the transcriptome response to fear and synaptic plasticity. Moreover, we report that regulation of m6A/m is impaired in major depressive disorder patients following glucocorticoid stimulation. Our findings indicate that brain m6A/m represents a novel layer of complexity in gene expression regulation after stress and that dysregulation of the m6A/m response may contribute to the pathophysiology of stress-related psychiatric disorders.


Assuntos
Adenosina/análogos & derivados , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Adenosina/genética , Adenosina/metabolismo , Adulto , Animais , Linhagem Celular Transformada , Humanos , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Estresse Psicológico/psicologia
6.
Nat Commun ; 9(1): 1596, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686286

RESUMO

Anorexia nervosa (AN) is a devastating eating disorder characterized by self-starvation that mainly affects women. Its etiology is unknown, which impedes successful treatment options leading to a limited chance of full recovery. Here, we show that gestation is a vulnerable window that can influence the predisposition to AN. By screening placental microRNA expression of naive and prenatally stressed (PNS) fetuses and assessing vulnerability to activity-based anorexia (ABA), we identify miR-340 as a sexually dimorphic regulator involved in prenatal programming of ABA. PNS caused gene-body hypermethylation of placental miR-340, which is associated with reduced miR-340 expression and increased protein levels of several target transcripts, GR, Cry2 and H3F3b. MiR-340 is linked to the expression of several nutrient transporters both in mice and human placentas. Using placenta-specific lentiviral transgenes and embryo transfer, we demonstrate the key role miR-340 plays in the mechanism involved in early life programming of ABA.


Assuntos
Anorexia Nervosa/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Adulto , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transferência Embrionária , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Predisposição Genética para Doença , Humanos , Masculino , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , MicroRNAs/genética , Atividade Motora , Gravidez , Análise de Sequência de RNA , Fatores Sexuais
7.
Neuropsychopharmacology ; 41(13): 3103-3113, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27485686

RESUMO

Lysine (K) methyltransferase 2a (Kmt2a) and other regulators of H3 lysine 4 methylation, a histone modification enriched at promoters and enhancers, are widely expressed throughout the brain, but molecular and cellular phenotypes in subcortical areas remain poorly explored. We report that Kmt2a conditional deletion in postnatal forebrain is associated with excessive nocturnal activity and with absent or blunted responses to stimulant and dopaminergic agonist drugs, in conjunction with near-complete loss of spike-timing-dependent long-term potentiation in medium spiny neurons (MSNs). Selective ablation of Kmt2a, but not the ortholog Kmt2b, in adult ventral striatum/nucleus accumbens neurons markedly increased anxiety scores in multiple behavioral paradigms. Striatal transcriptome sequencing in adult mutants identified 262 Kmt2a-sensitive genes, mostly downregulated in Kmt2a-deficient mice. Transcriptional repression includes the 5-Htr2a serotonin receptor, strongly associated with anxiety- and depression-related disorders in human and animal models. Consistent with the role of Kmt2a in promoting gene expression, the transcriptional regulators Bahcc1, Isl1, and Sp9 were downregulated and affected by H3K4 promoter hypomethylation. Therefore, Kmt2a regulates synaptic plasticity in striatal neurons and provides an epigenetic drug target for anxiety and dopamine-mediated behaviors.


Assuntos
Potenciais de Ação/genética , Ansiedade , Dopaminérgicos/farmacologia , Histona-Lisina N-Metiltransferase/deficiência , Proteína de Leucina Linfoide-Mieloide/deficiência , Plasticidade Neuronal/genética , Neurônios/fisiologia , Estriado Ventral/citologia , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Ansiedade/tratamento farmacológico , Ansiedade/genética , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Modelos Animais de Doenças , Feminino , Histona-Lisina N-Metiltransferase/genética , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
8.
J Neurosci ; 35(13): 5097-108, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834037

RESUMO

Neuronal histone H3-lysine 4 methylation landscapes are defined by sharp peaks at gene promoters and other cis-regulatory sequences, but molecular and cellular phenotypes after neuron-specific deletion of H3K4 methyl-regulators remain largely unexplored. We report that neuronal ablation of the H3K4-specific methyltransferase, Kmt2a/Mixed-lineage leukemia 1 (Mll1), in mouse postnatal forebrain and adult prefrontal cortex (PFC) is associated with increased anxiety and robust cognitive deficits without locomotor dysfunction. In contrast, only mild behavioral phenotypes were observed after ablation of the Mll1 ortholog Kmt2b/Mll2 in PFC. Impaired working memory after Kmt2a/Mll1 ablation in PFC neurons was associated with loss of training-induced transient waves of Arc immediate early gene expression critical for synaptic plasticity. Medial prefrontal layer V pyramidal neurons, a major output relay of the cortex, demonstrated severely impaired synaptic facilitation and temporal summation, two forms of short-term plasticity essential for working memory. Chromatin immunoprecipitation followed by deep sequencing in Mll1-deficient cortical neurons revealed downregulated expression and loss of the transcriptional mark, trimethyl-H3K4, at <50 loci, including the homeodomain transcription factor Meis2. Small RNA-mediated Meis2 knockdown in PFC was associated with working memory defects similar to those elicited by Mll1 deletion. Therefore, mature prefrontal neurons critically depend on maintenance of Mll1-regulated H3K4 methylation at a subset of genes with an essential role in cognition and emotion.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Memória de Curto Prazo/fisiologia , Proteína de Leucina Linfoide-Mieloide/metabolismo , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Comportamento Animal/fisiologia , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Masculino , Metilação , Camundongos , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/fisiologia , Células Piramidais/fisiologia
9.
Hum Mol Genet ; 24(5): 1441-56, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25480889

RESUMO

To investigate epigenetic contributions to Huntington's disease (HD) pathogenesis, we carried out genome-wide mapping of the transcriptional mark, trimethyl-histone H3-lysine 4 (H3K4me3) in neuronal nuclei extracted from prefrontal cortex of HD cases and controls using chromatin immunoprecipitation followed by deep-sequencing. Neuron-specific mapping of the genome-wide distribution of H3K4me3 revealed 136 differentially enriched loci associated with genes implicated in neuronal development and neurodegeneration, including GPR3, TMEM106B, PDIA6 and the Notch signaling genes hairy and enhancer of split 4 (HES4) and JAGGED2, supporting the view that the neuronal epigenome is affected in HD. Importantly, loss of H3K4me3 at CpG-rich sequences on the HES4 promoter was associated with excessive DNA methylation, reduced binding of nuclear proteins to the methylated region and altered expression of HES4 and HES4 targeted genes MASH1 and P21 involved in striatal development. Moreover, hypermethylation of HES4 promoter sequences was strikingly correlated with measures of striatal degeneration and age-of-onset in a cohort of 25 HD brains (r = 0.56, P = 0.006). Lastly, shRNA knockdown of HES4 in human neuroblastoma cells altered MASH1 and P21 mRNA expression and markedly increased mutated HTT-induced aggregates and cell death. These findings, taken together, suggest that epigenetic dysregulation of HES4 could play a critical role in modifying HD disease pathogenesis and severity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Epigênese Genética , Proteínas de Homeodomínio/metabolismo , Doença de Huntington/genética , Neostriado/patologia , Adulto , Autopsia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Metilação de DNA , Feminino , Loci Gênicos , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Humanos , Masculino , Neostriado/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Filogenia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição HES-1
10.
Nat Med ; 19(11): 1473-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24141422

RESUMO

Fragile X syndrome (FXS), the most common cause of inherited mental retardation and autism, is caused by transcriptional silencing of FMR1, which encodes the translational repressor fragile X mental retardation protein (FMRP). FMRP and cytoplasmic polyadenylation element-binding protein (CPEB), an activator of translation, are present in neuronal dendrites, are predicted to bind many of the same mRNAs and may mediate a translational homeostasis that, when imbalanced, results in FXS. Consistent with this possibility, Fmr1(-/y); Cpeb1(-/-) double-knockout mice displayed amelioration of biochemical, morphological, electrophysiological and behavioral phenotypes associated with FXS. Acute depletion of CPEB1 in the hippocampus of adult Fmr1(-/y) mice rescued working memory deficits, demonstrating reversal of this FXS phenotype. Finally, we find that FMRP and CPEB1 balance translation at the level of polypeptide elongation. Our results suggest that disruption of translational homeostasis is causal for FXS and that the maintenance of this homeostasis by FMRP and CPEB1 is necessary for normal neurologic function.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Fatores de Poliadenilação e Clivagem de mRNA/deficiência , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/fisiologia , Regiões 3' não Traduzidas , Animais , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/psicologia , Hipocampo/fisiopatologia , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Biol Psychiatry ; 74(9): 696-705, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23664640

RESUMO

BACKGROUND: Postmortem brain studies have shown that HDAC1-a lysine deacetylase with broad activity against histones and nonhistone proteins-is frequently expressed at increased levels in prefrontal cortex (PFC) of subjects diagnosed with schizophrenia and related disease. However, it remains unclear whether upregulated expression of Hdac1 in the PFC could affect cognition and behavior. METHODS: Using adeno-associated virus, an Hdac1 transgene was expressed in young adult mouse PFC, followed by behavioral assays for working and long-term memory, repetitive activity, and response to novelty. Prefrontal cortex transcriptomes were profiled by microarray. Antipsychotic drug effects were explored in mice treated for 21 days with haloperidol or clozapine. RESULTS: Hdac1 overexpression in PFC neurons and astrocytes resulted in robust impairments in working memory, increased repetitive behaviors, and abnormal locomotor response profiles in novel environments. Long-term memory remained intact. Over 300 transcripts showed subtle but significant changes in Hdac1-overexpressing PFC. Major histocompatibility complex class II (MHC II)-related transcripts, including HLA-DQA1/H2-Aa, HLA-DQB1/H2-Ab1, and HLA-DRB1/H2-Eb1, located in the chromosome 6p21.3-22.1 schizophrenia and bipolar disorder risk locus, were among the subset of genes with a more robust (>1.5-fold) downregulation in expression. Hdac1 levels declined during the course of normal PFC development. Antipsychotic drug treatment, including the atypical clozapine, did not affect Hdac1 levels in PFC but induced expression of multiple MHC II transcripts. CONCLUSIONS: Excessive HDAC1 activity, due to developmental defects or other factors, is associated with behavioral alterations and dysregulated expression of MHC II and other gene transcripts in the PFC.


Assuntos
Comportamento Exploratório/fisiologia , Histona Desacetilase 1/biossíntese , Histona Desacetilase 1/fisiologia , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Animais , Astrócitos/metabolismo , Clozapina/farmacologia , Regulação para Baixo , Genes MHC da Classe II/genética , Haloperidol/farmacologia , Antígenos de Histocompatibilidade Classe II/genética , Histona Desacetilase 1/genética , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Comportamento Estereotipado/fisiologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Regulação para Cima
12.
Neurobiol Dis ; 56: 104-15, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23639788

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common cause of elderly dementia. In an effort to contribute to the potential of molecular approaches to reduce degenerative processes we have tested the possibility that the neural adhesion molecule L1 ameliorates some characteristic cellular and molecular parameters associated with the disease in a mouse model of AD. Three-month-old mice overexpressing mutated forms of amyloid precursor protein and presenilin-1 under the control of a neuron-specific promoter received an injection of adeno-associated virus encoding the neuronal isoform of full-length L1 (AAV-L1) or, as negative control, green fluorescent protein (AAV-GFP) into the hippocampus and occipital cortex. Four months after virus injection, the mice were analyzed for histological and biochemical parameters of AD. AAV-L1 injection decreased the Aß plaque load, levels of Aß42, Aß42/40 ratio and astrogliosis compared with AAV-GFP controls. AAV-L1 injected mice also had increased densities of inhibitory synaptic terminals on pyramidal cells in the hippocampus when compared with AAV-GFP controls. Numbers of microglial cells/macrophages were similar in both groups, but numbers of microglial cells/macrophages per plaque were increased in AAV-L1 injected mice. To probe for a molecular mechanism that may underlie these effects, we analyzed whether L1 would directly and specifically interact with Aß. In a label-free binding assay, concentration dependent binding of the extracellular domain of L1, but not of the close homolog of L1 to Aß40 and Aß42 was seen, with the fibronectin type III homologous repeats 1-3 of L1 mediating this effect. Aggregation of Aß42 in vitro was reduced in the presence of the extracellular domain of L1. The combined observations indicate that L1, when overexpressed in neurons and glia, reduces several histopathological hallmarks of AD in mice, possibly by reduction of Aß aggregation. L1 thus appears to be a candidate molecule to ameliorate the pathology of AD, when applied in therapeutically viable treatment schemes.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Molécula L1 de Adesão de Célula Nervosa/uso terapêutico , Doença de Alzheimer/patologia , Animais , Western Blotting , Encéfalo/patologia , Dependovirus/genética , Ensaio de Imunoadsorção Enzimática , Gliose/patologia , Proteínas de Fluorescência Verde , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Lobo Occipital/metabolismo , Lobo Occipital/patologia , Placa Amiloide/patologia , Ligação Proteica , Células Piramidais/efeitos dos fármacos , Receptores CCR2/metabolismo , Fixação de Tecidos
13.
Neuropharmacology ; 61(8): 1297-305, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21820452

RESUMO

The specificity of the response of an organism is an important variable influencing stress-related parameters and psychopathological states. We have shown that trait anxiety in C57BL/6 mice, determined by their emergence latencies in the free choice open field test, positively correlates with the long-term behavioral and neuroendocrinological changes induced by a stressor. Here, we show that this interindividual variability is caused by a different reactivity of the hypothalamus-pituitary-adrenal (HPA) axis upon exposure to a stressor. Mice with high trait anxiety (long emergence latency, LEL) display a more pronounced stress-induced activation of the HPA axis than mice with low trait anxiety (short emergence latency, SEL). Moreover, stress-induced activation of tyrosine hydroxylase and corticotropin-releasing hormone occurred in LEL but not SEL mice. In search of the molecular mechanisms underlying these differences, we found that under non-stressed conditions mRNA and protein levels of the glucocorticoid receptor in the hippocampus were higher in LEL mice compared to SEL mice. Also, systemic injection of the glucocorticoid receptor antagonist RU486 decreased the stress-induced activation of the HPA axis and the long-term anxiogenic effects of stress observed in LEL mice. Finally, the rewarding properties of cocaine were enhanced in LEL mice compared to SEL mice, suggesting a causal link between trait anxiety, stress activity and the behavioral responses to drugs of addiction.


Assuntos
Regulação da Expressão Gênica/fisiologia , Receptores de Glucocorticoides/metabolismo , Estresse Psicológico/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/efeitos adversos , Análise de Variância , Animais , Ansiolíticos/uso terapêutico , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Hormônio Liberador da Corticotropina/metabolismo , Diazepam/uso terapêutico , Modelos Animais de Doenças , Inibidores da Captação de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mifepristona/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro , Radioimunoensaio , Ratos , Receptores de Glucocorticoides/genética , Agonistas do Receptor de Serotonina/efeitos adversos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/genética , Estresse Psicológico/patologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Cold Spring Harb Protoc ; 2010(4): pdb.prot5417, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20360371

RESUMO

The rostro-medial cortex of the mouse and rat, considered the functional homolog to the primate prefrontal cortex (PFC), is of growing importance for preclinical models of schizophrenia and other neurodevelopmental diseases for which symptoms typically emerge in adolescence and early adulthood. Therefore, in order to explore molecular mechanisms operating during these critical stages of PFC development, it will be important to develop an efficient gene delivery system for the PFC of juvenile animals. To this end, adeno-associated virus (AAV)-based systems are increasingly used in mice for targeted gene delivery in specific brain regions such as the hippocampus. Strikingly, there is very little literature on vector-mediated gene expression in the rostro-medial cortex. In addition, multiple AAV serotypes exist based on differences in their envelope capsid proteins. However, to date, the large majority of studies in the central nervous system (CNS) have utilized the AAV2 serotype. This is typically limited to a very focal transduction pattern and therefore is not ideal for the murine PFC, which occupies several square millimeters in the rostral hemisphere. Here, we introduce a protocol for efficient, AAV9-serotype-mediated gene delivery in juvenile (postnatal day 21) and young adult PFC, resulting in long-lasting transgene expression.


Assuntos
Dependovirus/genética , Vetores Genéticos , Giro do Cíngulo/virologia , Transdução Genética , Transgenes , Animais , Humanos , Camundongos
15.
Hippocampus ; 20(9): 1027-36, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19739230

RESUMO

The growth arrest specific 5 (gas5) is a noncoding protein gene that hosts small nucleolar RNAs. Based on the observation that gas5 RNA level in the brain is highest in the hippocampus and remarkably enhanced in aged mice, we tested the hypothesis that gas5 is involved in functions controlled by the hippocampus and known to be affected by age, such as spatial learning and novelty-induced behaviors. We show that aged (22-month-old) C57BL/6 male mice have spatial-learning impairments, reduced novelty-induced exploration, and enhanced gas5 RNA levels in the hippocampus compared to young (3-month-old) mice. At both ages, levels of gas5 RNA in the hippocampus negatively correlated with novelty-induced exploration in the open field and elevated-plus maze tests. No correlations were found between gas5 RNA levels in the hippocampus and performance in the water maze test. The expression of gas5 RNA in the rest of the brain did not correlate with any behavioral parameter analyzed. Because variations in novelty-induced behaviors could be caused by stressfull experiences, we analyzed whether gas5 RNA levels in the hippocampus are regulated by acute stressors. We found that gas5 RNA levels in the hippocampus were upregulated by 50% 24 h after a psychogenic stressor (60-min olfactory contact with a rat) but were unchanged after exposure to an unfamiliar environment or after acquisition of new spatial information in a one-trial learning task. The present results suggest that strong psychogenic stressors upregulate gas5 RNA in the hippocampus, which in turn affects novelty-induced responses controlled by this region. We hypothesize that long-life exposure to stressors causes an age-dependent increase in hippocampal gas5 RNA levels, which could be responsible for age-related reduced novelty-induced behaviors, thus suggesting a new mechanism by which ageing and stress affect hippocampal function.


Assuntos
Envelhecimento/genética , Comportamento Animal/fisiologia , Regulação para Baixo/genética , Comportamento Exploratório/fisiologia , Hipocampo/fisiologia , RNA Nucleolar Pequeno/biossíntese , Estresse Psicológico/genética , Regulação para Cima/genética , Envelhecimento/psicologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Nucleolar Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA