Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurology ; 91(22): e2078-e2088, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30413629

RESUMO

OBJECTIVE: To characterize the neurologic phenotypes associated with COL4A1/2 mutations and to seek genotype-phenotype correlation. METHODS: We analyzed clinical, EEG, and neuroimaging data of 44 new and 55 previously reported patients with COL4A1/COL4A2 mutations. RESULTS: Childhood-onset focal seizures, frequently complicated by status epilepticus and resistance to antiepileptic drugs, was the most common phenotype. EEG typically showed focal epileptiform discharges in the context of other abnormalities, including generalized sharp waves or slowing. In 46.4% of new patients with focal seizures, porencephalic cysts on brain MRI colocalized with the area of the focal epileptiform discharges. In patients with porencephalic cysts, brain MRI frequently also showed extensive white matter abnormalities, consistent with the finding of diffuse cerebral disturbance on EEG. Notably, we also identified a subgroup of patients with epilepsy as their main clinical feature, in which brain MRI showed nonspecific findings, in particular periventricular leukoencephalopathy and ventricular asymmetry. Analysis of 15 pedigrees suggested a worsening of the severity of clinical phenotype in succeeding generations, particularly when maternally inherited. Mutations associated with epilepsy were spread across COL4A1 and a clear genotype-phenotype correlation did not emerge. CONCLUSION: COL4A1/COL4A2 mutations typically cause a severe neurologic condition and a broader spectrum of milder phenotypes, in which epilepsy is the predominant feature. Early identification of patients carrying COL4A1/COL4A2 mutations may have important clinical consequences, while for research efforts, omission from large-scale epilepsy sequencing studies of individuals with abnormalities on brain MRI may generate misleading estimates of the genetic contribution to the epilepsies overall.


Assuntos
Colágeno Tipo IV/genética , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Mutação , Adulto Jovem
2.
Am J Hum Genet ; 80(3): 478-84, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17273968

RESUMO

The mitochondrial phosphate carrier SLC25A3 transports inorganic phosphate into the mitochondrial matrix, which is essential for the aerobic synthesis of adenosine triphosphate (ATP). We identified a homozygous mutation--c.215G-->A (p.Gly72Glu)--in the alternatively spliced exon 3A of this enzyme in two siblings with lactic acidosis, hypertrophic cardiomyopathy, and muscular hypotonia who died within the 1st year of life. Functional investigation of intact mitochondria showed a deficiency of ATP synthesis in muscle but not in fibroblasts, which correlated with the tissue-specific expression of exon 3A in muscle versus exon 3B in fibroblasts. The enzyme defect was confirmed by complementation analysis in yeast. This is the first report of patients with mitochondrial phosphate-carrier deficiency.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/deficiência , Mutação/genética , Fosforilação Oxidativa , Proteínas de Transporte de Fosfato/deficiência , Fosfatos/metabolismo , Acidose Láctica/complicações , Acidose Láctica/metabolismo , Trifosfato de Adenosina/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/metabolismo , Células Cultivadas , Metabolismo Energético , Éxons/genética , Feminino , Fibroblastos/metabolismo , Teste de Complementação Genética , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Hipotonia Muscular/complicações , Hipotonia Muscular/metabolismo , Linhagem , Proteínas de Transporte de Fosfato/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Irmãos
3.
Nucleic Acids Res ; 33(17): 5647-58, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16199753

RESUMO

We have studied the consequences of two homoplasmic, pathogenic point mutations (T7512C and G7497A) in the tRNA(Ser(UCN)) gene of mitochondrial (mt) DNA using osteosarcoma cybrids. We identified a severe reduction of tRNA(Ser(UCN)) to levels below 10% of controls for both mutations, resulting in a 40% reduction in mitochondrial protein synthesis rate and in a respiratory chain deficiency resembling that in the patients muscle. Aminoacylation was apparently unaffected. On non-denaturating northern blots we detected an altered electrophoretic mobility for G7497A containing tRNA molecules suggesting a structural impact of this mutation, which was confirmed by structural probing. By comparing in vitro transcribed molecules with native RNA in such gels, we also identified tRNA(Ser(UCN)) being present in two isoforms in vivo, probably corresponding to the nascent, unmodified transcripts co-migrating with the in vitro transcripts and a second, faster moving isoform corresponding to the mature tRNA. In cybrids containing either mutations the unmodified isoforms were severely reduced. We hypothesize that both mutations lead to an impairment of post-transcriptional modification processes, ultimately leading to a preponderance of degradation by nucleases over maturation by modifying enzymes, resulting in severely reduced tRNA(Ser(UCN)) steady state levels. We infer that an increased degradation rate, caused by disturbance of tRNA maturation and, in the case of the G7497A mutant, alteration of tRNA structure, is a new pathogenic mechanism of mt tRNA point mutations.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Mutação Puntual , Processamento Pós-Transcricional do RNA , RNA de Transferência de Serina/metabolismo , RNA/metabolismo , Aminoacilação , Sequência de Bases , Linhagem Celular , Criança , Pré-Escolar , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Masculino , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/biossíntese , Dados de Sequência Molecular , RNA/química , RNA/genética , Precursores de RNA/metabolismo , Estabilidade de RNA , RNA Mitocondrial , RNA de Transferência de Serina/química , RNA de Transferência de Serina/genética
4.
Hum Mol Genet ; 12(20): 2693-702, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12928484

RESUMO

Deficiencies in the activity of cytochrome c oxidase (COX) are an important cause of autosomal recessive respiratory chain disorders. Patients with isolated COX deficiency are clinically and genetically heterogeneous, and mutations in several different assembly factors have been found to cause specific clinical phenotypes. Two of the most common clinical presentations, Leigh Syndrome and hypertrophic cardiomyopathy, have so far only been associated with mutations in SURF1 or SCO2 and COX15, respectively. Here we show that expression of COX10 from a retroviral vector complements the COX deficiency in a patient with anemia and Leigh Syndrome, and in a patient with anemia, sensorineural deafness and fatal infantile hypertrophic cardiomyopathy. A partial rescue was also obtained following microcell-mediated transfer of mouse chromosomes into patient fibroblasts. COX10 functions in the first step of the mitochondrial heme A biosynthetic pathway, catalyzing the conversion of protoheme (heme B) to heme O via the farnesylation of a vinyl group at position C2. Heme A content was reduced in mitochondria from patient muscle and fibroblasts in proportion to the reduction in COX enzyme activity and the amount of fully assembled enzyme. Mutation analysis of COX10 identified four different missense alleles, predicting amino acid substitutions at evolutionarily conserved residues. A topological model places these residues in regions of the protein shown to have important catalytic functions by mutation analysis of a prokaryotic ortholog. Mutations in COX10 have previously been reported in a single family with tubulopathy and leukodystrophy. This study shows that mutations in this gene can cause nearly the full range of clinical phenotypes associated with early onset isolated COX deficiency.


Assuntos
Alquil e Aril Transferases/genética , Heme/análogos & derivados , Heme/genética , Proteínas de Membrana/genética , Mitocôndrias/genética , Mutação , Sequência de Aminoácidos , Animais , Cardiomiopatias/genética , Catálise , Cromatografia Líquida de Alta Pressão , Cromossomos/ultraestrutura , Clonagem Molecular , Análise Mutacional de DNA , Complexo IV da Cadeia de Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Éxons , Fibroblastos/metabolismo , Teste de Complementação Genética , Genoma , Heme/química , Humanos , Camundongos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Fenótipo , Retroviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA