Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1409138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952472

RESUMO

Xanthomatosis is a genetic disease inherited in an autosomal recessive manner. The specific phenotypic features are associated with patient's genetic profile. The result of the mutation is disorder of cholesterol synthesis and the accumulation of its precursors in tissues. The characteristic symptoms are progressive cerebellar ataxia, cataract, diarrhea, and the deposition of cholesterol in the tendons. Our objective is to follow-up information to treatment efficacy of 22-year-old patient diagnosed with cerebrotendinous xanthomatosis through 1.5 year observation. In 2012, an 11-year-old patient with a long history of deformed feet and frequent yellowing of the skin, was admitted to the Department of Neurology due to seizures. In 2013, the patient began to suffer from diarrhea, and its frequency was correlated with the concentration of bilirubin in the blood. In the same year cataract was diagnosed. Gradually, the patient starts to complain about progressive difficulties in moving. In 2019, genetic tests confirmed the diagnosis of cerebrotendinous xanthomatosis. Since July 2021, the patient has been treated with chenodeoxycholic acid. The deterioration of patient's mobility has been significantly inhibited, consequently his quality of life has improved. The presented case report underscores the efficacy of CDCA supplementation in halting the progression of CTX, resulting in marked improvements in the patient's quality of life.

2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834005

RESUMO

Multiple polyposes are heterogeneous diseases with different underlying molecular backgrounds, sharing a common symptom: the presence of transforming into cancerous intestinal polyps. Recent reports have indicated biallelic mutations in the NTHL1 gene, which is involved in base excision repair (BER), as predisposing to an elevated risk of colorectal cancer (CRC). We aimed to evaluate the significance of the p.Q82* truncating variant in predisposition to intestinal polyposis by assessing its frequency in polyposis patients. We genotyped 644 Polish patients and 634 control DNA samples using high-resolution melting analysis (HRM) and Sanger sequencing. We found the p.Q82* variant in four polyposis patients; in three, it was homozygous (OR = 6.90, p value = 0.202). Moreover, the p.R92C mutation was detected in one patient. We also looked more closely at the disease course in patients carrying NTHL1 mutations. Two homozygous patients also presented other neoplasia. In the family case, we noticed the earlier presence of polyps in the proband and early hepatoblastoma in his brother. We cannot univocally confirm the relationship of p.Q82* with an increased risk of CRC. However, homozygous p.Q82* was more frequent by 10-fold in patients without other mutations identified, which makes NTHL1 gene screening in this group reasonable.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais , Masculino , Humanos , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/diagnóstico , Polônia , Predisposição Genética para Doença , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Mutação , Desoxirribonuclease (Dímero de Pirimidina)/genética
3.
Clin Genet ; 101(2): 190-207, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34689324

RESUMO

Cerebrotendinous xanthomatosis (CTX) is an inborn error of metabolism caused by recessive variants in the cytochrome P450 CYP27A1 gene. CTX is said to manifest with childhood-onset chronic diarrhea and the classic triad of juvenile-onset cataracts, Achilles tendons xanthomas, and progressive ataxia. It is currently one of the few inherited neurometabolic disorders amenable to a specific treatment. The diagnosis may be significantly delayed resulting in permanent neurological impairment. A retrospective review of the clinical characteristics and diagnostic findings in case series of six Polish patients with CTX. Additional retrospective review of symptoms and pathogenic variants of 568 CTX available cases and case series from the past 20 years. To the best of our knowledge, this is the widest review of CTX cases reported in years 2000-2021. We report the largest cohort of Polish patients ever published, with the identification of two hot-spot mutations. During the review of available 568 cases, we found significant differences in the clinical phenotypes and the localization of variants within the gene between Asian and non-Asian populations. These findings may facilitate molecular testing in the Polish and Asian populations. Invariably better screening for CTX and wider awareness is needed.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Xantomatose Cerebrotendinosa/diagnóstico , Xantomatose Cerebrotendinosa/genética , Adolescente , Adulto , Alelos , Colestanotriol 26-Mono-Oxigenase/genética , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Mutação , Fenótipo , Polônia , Avaliação de Sintomas , Adulto Jovem
4.
Eur J Hum Genet ; 27(4): 525-534, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30622331

RESUMO

Split-hand-split-foot malformation (SHFM) is a rare condition that occurs in 1 in 8500-25,000 newborns and accounts for 15% of all limb reduction defects. SHFM is heterogeneous and can be isolated, associated with other malformations, or syndromic. The mode of inheritance is mostly autosomal dominant with incomplete penetrance, but can be X-linked or autosomal recessive. Seven loci are currently known: SHFM1 at 7q21.2q22.1 (DLX5 gene), SHFM2 at Xq26, SHFM3 at 10q24q25, SHFM4 at 3q27 (TP63 gene), SHFM5 at 2q31 and SHFM6 as a result of variants in WNT10B (chromosome 12q13). Duplications at 17p13.3 are seen in SHFM when isolated or associated with long bone deficiency. Tandem genomic duplications at chromosome 10q24 involving at least the DACTYLIN gene are associated with SHFM3. No point variant in any of the genes residing within the region has been identified so far, but duplication of exon 1 of the BTRC gene may explain the phenotype, with likely complex alterations of gene regulation mechanisms that would impair limb morphogenesis. We report on 32 new index cases identified by array-CGH and/or by qPCR, including some prenatal ones, leading to termination for the most severe. Twenty-two cases were presenting with SHFM and 7 with monodactyly only. Three had an overlapping phenotype. Additional findings were identified in 5 (renal dysplasia, cutis aplasia, hypogonadism and agenesis of corpus callosum with hydrocephalus). We present their clinical and radiological findings and review the literature on this rearrangement that seems to be one of the most frequent cause of SHFM.


Assuntos
Cromossomos Humanos Par 10/genética , Deformidades Congênitas da Mão/genética , Deformidades Congênitas dos Membros/genética , Duplicações Segmentares Genômicas/genética , Adulto , Pré-Escolar , Hibridização Genômica Comparativa/métodos , Proteínas F-Box/genética , Feminino , Rearranjo Gênico/genética , Predisposição Genética para Doença , Deformidades Congênitas da Mão/diagnóstico por imagem , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Lactente , Deformidades Congênitas dos Membros/diagnóstico por imagem , Deformidades Congênitas dos Membros/fisiopatologia , Masculino , Linhagem , Fenótipo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas/genética , Radiografia , Proteínas Wnt/genética , Adulto Jovem
5.
Eur J Hum Genet ; 26(8): 1121-1131, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29706646

RESUMO

Malformations of cortical development (MCDs) manifest with structural brain anomalies that lead to neurologic sequelae, including epilepsy, cerebral palsy, developmental delay, and intellectual disability. To investigate the underlying genetic architecture of patients with disorders of cerebral cortical development, a cohort of 54 patients demonstrating neuroradiologic signs of MCDs was investigated. Individual genomes were interrogated for single-nucleotide variants (SNV) and copy number variants (CNV) with whole-exome sequencing and chromosomal microarray studies. Variation affecting known MCDs-associated genes was found in 16/54 cases, including 11 patients with SNV, 2 patients with CNV, and 3 patients with both CNV and SNV, at distinct loci. Diagnostic pathogenic SNV and potentially damaging variants of unknown significance (VUS) were identified in two groups of seven individuals each. We demonstrated that de novo variants are important among patients with MCDs as they were identified in 10/16 individuals with a molecular diagnosis. Three patients showed changes in known MCDs genes  and a clinical phenotype beyond the usual characteristics observed, i.e., phenotypic expansion, for a particular known disease gene clinical entity. We also discovered 2 likely candidate genes, CDH4, and ASTN1, with human and animal studies supporting their roles in brain development, and 5 potential candidate genes. Our findings emphasize genetic heterogeneity of MCDs disorders and postulate potential novel candidate genes involved in cerebral cortical development.


Assuntos
Variações do Número de Cópias de DNA , Exoma , Malformações do Desenvolvimento Cortical/genética , Polimorfismo de Nucleotídeo Único , Caderinas/genética , Feminino , Heterogeneidade Genética , Humanos , Masculino , Malformações do Desenvolvimento Cortical/patologia , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética
6.
Eur J Med Genet ; 58(1): 14-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25463315

RESUMO

Cardio-facio-cutaneous (CFC) syndrome is characterized by a variable degree of developmental delay and congenital anomalies, including characteristic facial, cardiac, and ectodermal abnormalities. It is caused by activating mutations in the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. In, however, approximately 10%-30% of individuals with a clinical diagnosis of CFCS, no mutation of the causative gene is found. Therefore, clinical studies in patients with the CFCS spectrum are valuable. To investigate the phenotypic spectrum and molecular diversity of germline mutations affecting genes encoding serine/threonine kinases, a group of 15 children and young adults with a diagnosis of CFCS was screened. We documented three novel mutations in the BRAF gene and correlated clinical findings with causative mutations in the BRAF or MEK1/MEK2 genes.


Assuntos
Displasia Ectodérmica/genética , Insuficiência de Crescimento/genética , Cardiopatias Congênitas/genética , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 2/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Adulto , Criança , Pré-Escolar , Displasia Ectodérmica/diagnóstico , Fácies , Insuficiência de Crescimento/diagnóstico , Feminino , Cardiopatias Congênitas/diagnóstico , Humanos , Masculino , Fenótipo , Polônia/epidemiologia , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA