Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Circ Res ; 134(8): e52-e71, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497220

RESUMO

BACKGROUND: Andersen-Tawil syndrome type 1 is a rare heritable disease caused by mutations in the gene coding the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys (cysteine)122-to-Cys154 disulfide bond in the channel structure is crucial for proper folding but has not been associated with correct channel function at the membrane. We evaluated whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing its open state. METHODS: We identified a Kir2.1 loss-of-function mutation (c.366 A>T; p.Cys122Tyr) in an ATS1 family. To investigate its pathophysiological implications, we generated an AAV9-mediated cardiac-specific mouse model expressing the Kir2.1C122Y variant. We employed a multidisciplinary approach, integrating patch clamping and intracardiac stimulation, molecular biology techniques, molecular dynamics, and bioluminescence resonance energy transfer experiments. RESULTS: Kir2.1C122Y mice recapitulated the ECG features of ATS1 independently of sex, including corrected QT prolongation, conduction defects, and increased arrhythmia susceptibility. Isolated Kir2.1C122Y cardiomyocytes showed significantly reduced inwardly rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking. Molecular dynamics predicted that the C122Y mutation provoked a conformational change over the 2000-ns simulation, characterized by a greater loss of hydrogen bonds between Kir2.1 and phosphatidylinositol 4,5-bisphosphate than wild type (WT). Therefore, the phosphatidylinositol 4,5-bisphosphate-binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch clamping, the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing phosphatidylinositol 4,5-bisphosphate concentrations. In addition, the Kir2.1C122Y mutation resulted in channelosome degradation, demonstrating temporal instability of both Kir2.1 and NaV1.5 proteins. CONCLUSIONS: The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential for the channel function. We demonstrate that breaking disulfide bonds in the extracellular domain disrupts phosphatidylinositol 4,5-bisphosphate-dependent regulation, leading to channel dysfunction and defects in Kir2.1 energetic stability. The mutation also alters functional expression of the NaV1.5 channel and ultimately leads to conduction disturbances and life-threatening arrhythmia characteristic of Andersen-Tawil syndrome type 1.


Assuntos
Síndrome de Andersen , Humanos , Camundongos , Animais , Síndrome de Andersen/genética , Síndrome de Andersen/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Doença do Sistema de Condução Cardíaco , Dissulfetos , Fosfatidilinositóis/metabolismo
2.
Cardiovasc Res ; 120(5): 490-505, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261726

RESUMO

AIMS: Short QT syndrome type 3 (SQTS3) is a rare arrhythmogenic disease caused by gain-of-function mutations in KCNJ2, the gene coding the inward rectifier potassium channel Kir2.1. We used a multidisciplinary approach and investigated arrhythmogenic mechanisms in an in-vivo model of de-novo mutation Kir2.1E299V identified in a patient presenting an extremely abbreviated QT interval and paroxysmal atrial fibrillation. METHODS AND RESULTS: We used intravenous adeno-associated virus-mediated gene transfer to generate mouse models, and confirmed cardiac-specific expression of Kir2.1WT or Kir2.1E299V. On ECG, the Kir2.1E299V mouse recapitulated the QT interval shortening and the atrial-specific arrhythmia of the patient. The PR interval was also significantly shorter in Kir2.1E299V mice. Patch-clamping showed extremely abbreviated action potentials in both atrial and ventricular Kir2.1E299V cardiomyocytes due to a lack of inward-going rectification and increased IK1 at voltages positive to -80 mV. Relative to Kir2.1WT, atrial Kir2.1E299V cardiomyocytes had a significantly reduced slope conductance at voltages negative to -80 mV. After confirming a higher proportion of heterotetrameric Kir2.x channels containing Kir2.2 subunits in the atria, in-silico 3D simulations predicted an atrial-specific impairment of polyamine block and reduced pore diameter in the Kir2.1E299V-Kir2.2WT channel. In ventricular cardiomyocytes, the mutation increased excitability by shifting INa activation and inactivation in the hyperpolarizing direction, which protected the ventricle against arrhythmia. Moreover, Purkinje myocytes from Kir2.1E299V mice manifested substantially higher INa density than Kir2.1WT, explaining the abbreviation in the PR interval. CONCLUSION: The first in-vivo mouse model of cardiac-specific SQTS3 recapitulates the electrophysiological phenotype of a patient with the Kir2.1E299V mutation. Kir2.1E299V eliminates rectification in both cardiac chambers but protects against ventricular arrhythmias by increasing excitability in both Purkinje-fiber network and ventricles. Consequently, the predominant arrhythmias are supraventricular likely due to the lack of inward rectification and atrial-specific reduced pore diameter of the Kir2.1E299V-Kir2.2WT heterotetramer.


Assuntos
Fibrilação Atrial , Modelos Animais de Doenças , Miócitos Cardíacos , Canais de Potássio Corretores do Fluxo de Internalização , Animais , Humanos , Camundongos , Potenciais de Ação , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/metabolismo , Predisposição Genética para Doença , Frequência Cardíaca/genética , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
3.
Cells ; 12(15)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37566035

RESUMO

Cardiotoxicity due to anthracyclines (CDA) affects cancer patients, but we cannot predict who may suffer from this complication. CDA is a complex trait with a polygenic component that is mainly unidentified. We propose that levels of intermediate molecular phenotypes (IMPs) in the myocardium associated with histopathological damage could explain CDA susceptibility, so variants of genes encoding these IMPs could identify patients susceptible to this complication. Thus, a genetically heterogeneous cohort of mice (n = 165) generated by backcrossing were treated with doxorubicin and docetaxel. We quantified heart fibrosis using an Ariol slide scanner and intramyocardial levels of IMPs using multiplex bead arrays and QPCR. We identified quantitative trait loci linked to IMPs (ipQTLs) and cdaQTLs via linkage analysis. In three cancer patient cohorts, CDA was quantified using echocardiography or Cardiac Magnetic Resonance. CDA behaves as a complex trait in the mouse cohort. IMP levels in the myocardium were associated with CDA. ipQTLs integrated into genetic models with cdaQTLs account for more CDA phenotypic variation than that explained by cda-QTLs alone. Allelic forms of genes encoding IMPs associated with CDA in mice, including AKT1, MAPK14, MAPK8, STAT3, CAS3, and TP53, are genetic determinants of CDA in patients. Two genetic risk scores for pediatric patients (n = 71) and women with breast cancer (n = 420) were generated using machine-learning Least Absolute Shrinkage and Selection Operator (LASSO) regression. Thus, IMPs associated with heart damage identify genetic markers of CDA risk, thereby allowing more personalized patient management.


Assuntos
Cardiotoxicidade , Neoplasias , Feminino , Animais , Camundongos , Cardiotoxicidade/etiologia , Antraciclinas/efeitos adversos , Marcadores Genéticos , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Fenótipo
4.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333254

RESUMO

Background: Andersen-Tawil Syndrome Type 1 (ATS1) is a rare heritable disease caused by mutations in the strong inwardly rectifying K+ channel Kir2.1. The extracellular Cys122-to-Cys154 disulfide bond in the Kir2.1 channel structure is crucial for proper folding, but has not been associated with correct channel function at the membrane. We tested whether a human mutation at the Cys122-to-Cys154 disulfide bridge leads to Kir2.1 channel dysfunction and arrhythmias by reorganizing the overall Kir2.1 channel structure and destabilizing the open state of the channel. Methods and Results: We identified a Kir2.1 loss-of-function mutation in Cys122 (c.366 A>T; p.Cys122Tyr) in a family with ATS1. To study the consequences of this mutation on Kir2.1 function we generated a cardiac specific mouse model expressing the Kir2.1C122Y mutation. Kir2.1C122Y animals recapitulated the abnormal ECG features of ATS1, like QT prolongation, conduction defects, and increased arrhythmia susceptibility. Kir2.1C122Y mouse cardiomyocytes showed significantly reduced inward rectifier K+ (IK1) and inward Na+ (INa) current densities independently of normal trafficking ability and localization at the sarcolemma and the sarcoplasmic reticulum. Kir2.1C122Y formed heterotetramers with wildtype (WT) subunits. However, molecular dynamic modeling predicted that the Cys122-to-Cys154 disulfide-bond break induced by the C122Y mutation provoked a conformational change over the 2000 ns simulation, characterized by larger loss of the hydrogen bonds between Kir2.1 and phosphatidylinositol-4,5-bisphosphate (PIP2) than WT. Therefore, consistent with the inability of Kir2.1C122Y channels to bind directly to PIP2 in bioluminescence resonance energy transfer experiments, the PIP2 binding pocket was destabilized, resulting in a lower conductance state compared with WT. Accordingly, on inside-out patch-clamping the C122Y mutation significantly blunted Kir2.1 sensitivity to increasing PIP2 concentrations. Conclusion: The extracellular Cys122-to-Cys154 disulfide bond in the tridimensional Kir2.1 channel structure is essential to channel function. We demonstrated that ATS1 mutations that break disulfide bonds in the extracellular domain disrupt PIP2-dependent regulation, leading to channel dysfunction and life-threatening arrhythmias.

5.
bioRxiv ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36712139

RESUMO

Cardiotoxicity due to anthracyclines (CDA) affects cancer patients, but we cannot predict who may suffer from this complication. CDA is a complex disease whose polygenic component is mainly unidentified. We propose that levels of intermediate molecular phenotypes in the myocardium associated with histopathological damage could explain CDA susceptibility; so that variants of genes encoding these intermediate molecular phenotypes could identify patients susceptible to this complication. A genetically heterogeneous cohort of mice generated by backcrossing (N = 165) was treated with doxorubicin and docetaxel. Cardiac histopathological damage was measured by fibrosis and cardiomyocyte size by an Ariol slide scanner. We determine intramyocardial levels of intermediate molecular phenotypes of CDA associated with histopathological damage and quantitative trait loci (ipQTLs) linked to them. These ipQTLs seem to contribute to the missing heritability of CDA because they improve the heritability explained by QTL directly linked to CDA (cda-QTLs) through genetic models. Genes encoding these molecular subphenotypes were evaluated as genetic markers of CDA in three cancer patient cohorts (N = 517) whose cardiac damage was quantified by echocardiography or Cardiac Magnetic Resonance. Many SNPs associated with CDA were found using genetic models. LASSO multivariate regression identified two risk score models, one for pediatric cancer patients and the other for women with breast cancer. Molecular intermediate phenotypes associated with heart damage can identify genetic markers of CDA risk, thereby allowing a more personalized patient management. A similar strategy could be applied to identify genetic markers of other complex trait diseases.

6.
Elife ; 112022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35971771

RESUMO

Stress-activated p38 kinases control a plethora of functions, and their dysregulation has been linked to the development of steatosis, obesity, immune disorders, and cancer. Therefore, they have been identified as potential targets for novel therapeutic strategies. There are four p38 family members (p38α, p38ß, p38γ, and p38δ) that are activated by MKK3 and MKK6. Here, we demonstrate that lack of MKK6 reduces the lifespan in mice. Longitudinal study of cardiac function in MKK6 KO mice showed that young mice develop cardiac hypertrophy which progresses to cardiac dilatation and fibrosis with age. Mechanistically, lack of MKK6 blunts p38α activation while causing MKK3-p38γ/δ hyperphosphorylation and increased mammalian target of rapamycin (mTOR) signaling, resulting in cardiac hypertrophy. Cardiac hypertrophy in MKK6 KO mice is reverted by knocking out either p38γ or p38δ or by inhibiting the mTOR pathway with rapamycin. In conclusion, we have identified a key role for the MKK3/6-p38γ/δ pathway in the development of cardiac hypertrophy, which has important implications for the clinical use of p38α inhibitors in the long-term treatment since they might result in cardiotoxicity.


The human heart can increase its size to supply more blood to the body's organs. This process, called hypertrophy, can happen during exercise or be caused by medical conditions, such as high blood pressure or inherited genetic diseases. If hypertrophy is continually driven by illness, this can cause the heart to fail and no longer be able to properly pump blood around the body. For hypertrophy to happen, several molecular changes occur in the cells responsible for contracting the heart, including activation of the p38 pathway. Within this pathway is a p38 enzyme as well as a series of other proteins which are sequentially turned on in response to stress, such as inflammatory molecules or mechanical forces that alter the cell's shape. There are different types of p38 enzyme which have been linked to other diseases, making them a promising target for drug development. However, clinical trials blocking individual members of the p38 family have had disappointing results. An alternative approach is to target other proteins involved in the p38 pathway, such as MKK6, but it is not known what effect this might have. To investigate, Romero-Becerra et al. genetically modified mice to not have any MKK6 protein. As a result, these mice had a shorter lifespan, with hypertrophy developing at a young age that led to heart problems. Romero-Becerra et al. used different mice models to understand why this happened, showing that a lack of MKK6 reduces the activity of a specific member of the p38 family called p38α. However, this blockage boosted a different branch of the pathway which involved two other p38 proteins, p38γ and p38δ. This, in turn, triggered another key pathway called mTOR which also promotes hypertrophy of the heart. These results suggest that drugs blocking MKK6 and p38α could lead to side effects that cause further harm to the heart. A more promising approach for treating hypertrophic heart conditions could be to inhibit p38γ and/or p38δ. However, before this can be fully explored, further work is needed to generate compounds that specifically target these proteins.


Assuntos
Cardiopatias , MAP Quinase Quinase 6 , Proteína Quinase 13 Ativada por Mitógeno , Animais , Cardiomegalia , Cardiopatias/genética , Cardiopatias/patologia , Estudos Longitudinais , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/genética , Camundongos , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Mol Cell Proteomics ; 19(9): 1436-1449, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32541000

RESUMO

Kir2.1, a strong inward rectifier potassium channel encoded by the KCNJ2 gene, is a key regulator of the resting membrane potential of the cardiomyocyte and plays an important role in controlling ventricular excitation and action potential duration in the human heart. Mutations in KCNJ2 result in inheritable cardiac diseases in humans, e.g. the type-1 Andersen-Tawil syndrome (ATS1). Understanding the molecular mechanisms that govern the regulation of inward rectifier potassium currents by Kir2.1 in both normal and disease contexts should help uncover novel targets for therapeutic intervention in ATS1 and other Kir2.1-associated channelopathies. The information available to date on protein-protein interactions involving Kir2.1 channels remains limited. Additional efforts are necessary to provide a comprehensive map of the Kir2.1 interactome. Here we describe the generation of a comprehensive map of the Kir2.1 interactome using the proximity-labeling approach BioID. Most of the 218 high-confidence Kir2.1 channel interactions we identified are novel and encompass various molecular mechanisms of Kir2.1 function, ranging from intracellular trafficking to cross-talk with the insulin-like growth factor receptor signaling pathway, as well as lysosomal degradation. Our map also explores the variations in the interactome profiles of Kir2.1WTversus Kir2.1Δ314-315, a trafficking deficient ATS1 mutant, thus uncovering molecular mechanisms whose malfunctions may underlie ATS1 disease. Finally, using patch-clamp analysis, we validate the functional relevance of PKP4, one of our top BioID interactors, to the modulation of Kir2.1-controlled inward rectifier potassium currents. Our results validate the power of our BioID approach in identifying functionally relevant Kir2.1 interactors and underline the value of our Kir2.1 interactome as a repository for numerous novel biological hypotheses on Kir2.1 and Kir2.1-associated diseases.


Assuntos
Síndrome de Andersen/metabolismo , Miócitos Cardíacos/metabolismo , Placofilinas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Mapas de Interação de Proteínas , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Síndrome de Andersen/genética , Síndrome de Andersen/fisiopatologia , Cromatografia Líquida , Desmossomos/efeitos dos fármacos , Desmossomos/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Chaperonas Moleculares/metabolismo , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Somatomedinas/metabolismo , Espectrometria de Massas em Tandem , Utrofina/metabolismo
8.
JACC Basic Transl Sci ; 4(5): 640-654, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31768479

RESUMO

This paper discusses the evolving concept of atrial myopathy by presenting how it develops and how it affects the properties of the atria. It also reviews the complex relationships among atrial myopathy, atrial fibrillation (AF), and stroke. Finally, it discusses how to apply the concept of atrial myopathy in the clinical setting-to identify patients with atrial myopathy and to be more selective in anticoagulation in a subset of patients with AF. An apparent lack of a temporal relationship between episodes of paroxysmal AF and stroke in patients with cardiac implantable electronic devices has led investigators to search for additional factors that are responsible for AF-related strokes. Multiple animal models and human studies have revealed a close interplay of atrial myopathy, AF, and stroke via various mechanisms (e.g., aging, inflammation, oxidative stress, and stretch), which, in turn, lead to fibrosis, electrical and autonomic remodeling, and a pro-thrombotic state. The complex interplay among these mechanisms creates a vicious cycle of ever-worsening atrial myopathy and a higher risk of more sustained AF and strokes. By highlighting the importance of atrial myopathy and the risk of strokes independent of AF, this paper reviews the methods to identify patients with atrial myopathy and proposes a way to incorporate the concept of atrial myopathy to guide anticoagulation in patients with AF.

9.
Circ Res ; 125(10): e75-e92, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31533542

RESUMO

It is now well recognized that many lifesaving oncology drugs may adversely affect the heart and cardiovascular system, including causing irreversible cardiac injury that can result in reduced quality of life. These effects, which may manifest in the short term or long term, are mechanistically not well understood. Research is hampered by the reliance on whole-animal models of cardiotoxicity that may fail to reflect the fundamental biology or cardiotoxic responses of the human myocardium. The emergence of human induced pluripotent stem cell-derived cardiomyocytes as an in vitro research tool holds great promise for understanding drug-induced cardiotoxicity of oncological drugs that may manifest as contractile and electrophysiological dysfunction, as well as structural abnormalities, making it possible to deliver novel drugs free from cardiac liabilities and guide personalized therapy. This article briefly reviews the challenges of cardio-oncology, the strengths and limitations of using human induced pluripotent stem cell-derived cardiomyocytes to represent clinical findings in the nonclinical research space, and future directions for their further use.


Assuntos
American Heart Association , Antineoplásicos/toxicidade , Cardiotoxicidade/genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Estados Unidos/epidemiologia
10.
Circ Arrhythm Electrophysiol ; 12(3): e007080, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30879334

RESUMO

BACKGROUND: Ablation of some myocardial substrates requires catheter-based radiofrequency delivery at the root of a great artery. We studied the safety and efficacy parameters associated with catheter-based radiofrequency delivery at the root of the aorta and pulmonary artery. METHODS: Thirty-six pigs underwent in-vivo catheter-based ablation under continuous contact-force and lesion index (power, contact-force, and time) monitoring during 60-s radiofrequency delivery with an open-irrigated tip catheter. Twenty-eight animals were allocated to groups receiving 40 W (n=9), 50 W (n=10), or 60 W (n=9) radiofrequency energy, and acute (n=22) and chronic (n=6) arterial wall damage was quantified by multiphoton microscopy in ex vivo samples. Adjacent myocardial lesions were quantified in parallel samples. The remaining 8 pigs were used to validate safety and efficacy parameters. RESULTS: Acute collagen and elastin alterations were significantly associated with radiofrequency power, although chronic assessment revealed vascular wall recovery in lesions without steam pop. The main parameters associated with steam pops were median peak temperature >42°C and impedance falls >23 ohms. Unlike other parameters, lesion index values of 9.1 units (interquartile range, 8.7-9.8) were associated with the presence of adjacent myocardial lesions in both univariate ( P=0.03) and multivariate analyses ( P=0.049; odds ratio, 1.99; 95% CI, 1.02-3.98). In the validation group, lesion index values using 40 W over a range of contact-forces correlated with the size of radiofrequency lesions (R2=0.57; P=0.03), with no angiographic or histopathologic signs of coronary artery damage. CONCLUSIONS: Lesion index values obtained during 40 W radiofrequency applications reliably monitor safe and effective lesion creation at the root of the great arteries.


Assuntos
Aorta/cirurgia , Cateteres Cardíacos , Ablação por Cateter/instrumentação , Artéria Pulmonar/cirurgia , Irrigação Terapêutica/instrumentação , Animais , Aorta/metabolismo , Aorta/patologia , Ablação por Cateter/efeitos adversos , Colágeno/metabolismo , Elastina/metabolismo , Desenho de Equipamento , Masculino , Modelos Animais , Duração da Cirurgia , Pressão , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Medição de Risco , Fatores de Risco , Sus scrofa
11.
J Am Heart Assoc ; 8(3): e010115, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30675825

RESUMO

Background Several metabolic conditions can cause the Brugada ECG pattern, also called Brugada phenotype (BrPh). We aimed to define the clinical characteristics and outcome of BrPh patients and elucidate the mechanisms underlying BrPh attributed to hyperkalemia. Methods and Results We prospectively identified patients hospitalized with severe hyperkalemia and ECG diagnosis of BrPh and compared their clinical characteristics and outcome with patients with hyperkalemia but no BrPh ECG. Computer simulations investigated the roles of extracellular potassium increase, fibrosis at the right ventricular outflow tract, and epicardial/endocardial gradients in transient outward current. Over a 6-year period, 15 patients presented severe hyperkalemia with BrPh ECG that was transient and disappeared after normalization of their serum potassium. Most patients were admitted because of various severe medical conditions causing hyperkalemia. Six (40%) patients presented malignant arrhythmias and 6 died during admission. Multiple logistic regression analysis revealed that higher serum potassium levels (odds ratio, 15.8; 95% CI, 3.1-79; P=0.001) and male sex (odds ratio, 17; 95% CI, 1.05-286; P=0.045) were risk factors for developing BrPh ECG in patients with severe hyperkalemia. In simulations, hyperkalemia yielded BrPh by promoting delayed and heterogeneous right ventricular outflow tract activation attributed to elevation of resting potential, reduced availability of inward sodium channel conductance, and increased right ventricular outflow tract fibrosis. An elevated transient outward current gradient contributed to, but was not essential for, the BrPh phenotype. Conclusions In patients with severe hyperkalemia, a BrPh ECG is associated with malignant arrhythmias and all-cause mortality secondary to resting potential depolarization, reduced sodium current availability, and fibrosis at the right ventricular outflow tract.


Assuntos
Síndrome de Brugada/fisiopatologia , Simulação por Computador , Eletrocardiografia/métodos , Sistema de Condução Cardíaco/fisiopatologia , Hiperpotassemia/sangue , Potássio/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Síndrome de Brugada/sangue , Síndrome de Brugada/etiologia , Feminino , Seguimentos , Ventrículos do Coração/fisiopatologia , Humanos , Hiperpotassemia/complicações , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Tempo
14.
Proc Natl Acad Sci U S A ; 114(3): E416-E425, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049825

RESUMO

Long QT syndrome (LQTS) exhibits great phenotype variability among family members carrying the same mutation, which can be partially attributed to genetic factors. We functionally analyzed the KCNH2 (encoding for Kv11.1 or hERG channels) and TBX20 (encoding for the transcription factor Tbx20) variants found by next-generation sequencing in two siblings with LQTS in a Spanish family of African ancestry. Affected relatives harbor a heterozygous mutation in KCNH2 that encodes for p.T152HfsX180 Kv11.1 (hERG). This peptide, by itself, failed to generate any current when transfected into Chinese hamster ovary (CHO) cells but, surprisingly, exerted "chaperone-like" effects over native hERG channels in both CHO cells and mouse atrial-derived HL-1 cells. Therefore, heterozygous transfection of native (WT) and p.T152HfsX180 hERG channels generated a current that was indistinguishable from that generated by WT channels alone. Some affected relatives also harbor the p.R311C mutation in Tbx20. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), Tbx20 enhanced human KCNH2 gene expression and hERG currents (IhERG) and shortened action-potential duration (APD). However, Tbx20 did not modify the expression or activity of any other channel involved in ventricular repolarization. Conversely, p.R311C Tbx20 did not increase KCNH2 expression in hiPSC-CMs, which led to decreased IhERG and increased APD. Our results suggest that Tbx20 controls the expression of hERG channels responsible for the rapid component of the delayed rectifier current. On the contrary, p.R311C Tbx20 specifically disables the Tbx20 protranscriptional activity over KCNH2 Therefore, TBX20 can be considered a KCNH2-modifying gene.


Assuntos
Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Potenciais de Ação/genética , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Células CHO , Linhagem Celular , Cricetulus , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Masculino , Camundongos , Mutação/genética , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Eur Heart J ; 38(1): 53-61, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26612579

RESUMO

AIMS: Accumulation of atrial adipose tissue is associated with atrial fibrillation (AF). However, the underlying mechanisms remain poorly understood. We examined the relationship between the characteristics of fatty infiltrates of the atrial myocardium and the history of AF. METHODS AND RESULTS: Atrial samples, collected in 92 patients during cardiac surgery and in a sheep model of persistent AF, were subjected to a detailed histological analysis. In sections of human right atrial samples, subepicardial fatty infiltrations were commonly observed in the majority of patients. A clear difference in the appearance and fibrotic content of these fatty infiltrations was observed. Fibro-fatty infiltrates predominated in patients with permanent AF (no AF: 37 ± 24% vs. paroxysmal AF: 50 ± 21% vs. permanent AF: 64 ± 23%, P < 0.001). An inverse correlation between fibrotic remodelling and the amount of subepicardial adipose tissue suggested the progressive fibrosis of fatty infiltrates with permanent AF. This hypothesis was tested in a sheep model of AF. In AF sheep, an increased accumulation of peri-atrial fat depot was observed on cardiac magnetic resonance imaging and dense fibro-fatty infiltrations predominated in the left atria of AF sheep. Cellular inflammation, mainly consisting of functional cytotoxic T lymphocytes, was observed together with adipocyte cell death in human atria. CONCLUSION: Atrial fibrillation is associated with the fibrosis of subepicardial fatty infiltrates, a process in which cytotoxic lymphocytes might be involved. This remodelling of the atrial subepicardium could contribute to structural remodelling forming a substrate for AF.


Assuntos
Tecido Adiposo/patologia , Fibrilação Atrial/patologia , Remodelamento Atrial/fisiologia , Miocárdio/patologia , Idoso , Análise de Variância , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Fibrose/fisiopatologia , Átrios do Coração , Humanos , Angiografia por Ressonância Magnética , Masculino , Estudos Retrospectivos , Ovinos
16.
J Mol Cell Cardiol ; 99: 162-173, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27545043

RESUMO

MicroRNAs (miR) have considerable potential as therapeutic tools in cardiac diseases. Alterations in atrial miR are involved in the development of atrial fibrillation (AF), but the molecular mechanism underlying their contribution to atrial remodeling in chronic atrial fibrillation (CAF) is only partially understood. Here we used miR array to analyze the miR profile of atrial biopsies from sinus rhythm (SR) and CAF patients. qRT-PCR identified a distinctive CAF-miR signature and described conserved miR-208b upregulation in human and ovine AF atrial tissue. We used bioinformatics analysis to predict genes and signaling pathways as putative miR-208b targets, which highlighted genes from the cardiac muscle gene program and from canonical WNT, gap-junction and Ca2+ signaling networks. Results from analysis of miR-208b-overexpressing HL-1 atrial myocytes and from myocytes isolated from CAF patients showed that aberrant miR-208b levels reduced the expression and function of L-type Ca2+ channel subunits (CACNA1C and CACNB2) as well as the sarcoplasmic reticulum-Ca2+ pump SERCA2. These findings clearly pointed to CAF-specific upregulated miR-208b as an important mediator in Ca2+ handling impairment during atrial remodeling.


Assuntos
Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Cálcio/metabolismo , Átrios do Coração/citologia , Átrios do Coração/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Regiões 3' não Traduzidas , Animais , Fibrilação Atrial/fisiopatologia , Remodelamento Atrial , Sequência de Bases , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , Doença Crônica , Conexina 43/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Átrios do Coração/fisiopatologia , Humanos , Miosinas/genética , Ligação Proteica , Interferência de RNA , RNA Mensageiro/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Ovinos , Proteínas Wnt/metabolismo
17.
J Mol Endocrinol ; 57(1): 1-11, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27099398

RESUMO

Somatic and germline mutations in the inward-rectifying K(+) channel (KCNJ5) are a common cause of primary aldosteronism (PA) in aldosterone-producing adenoma and familial hyperaldosteronism type III, respectively. Dysregulation of adrenal cell calcium signaling represents one mechanism for mutated KCNJ5 stimulation of aldosterone synthase (CYP11B2) expression and aldosterone production. However, the mechanisms stimulating acute and chronic production of aldosterone by mutant KCNJ5 have not been fully characterized. Herein, we defined the effects of the T158A KCNJ5 mutation (KCNJ5(T158A)) on acute and chronic regulation of aldosterone production using an adrenal cell line with a doxycycline-inducible KCNJ5(T158A) gene (HAC15-TRE-KCNJ5(T158A)). Doxycycline incubation caused a time-dependent increase in KCNJ5(T158A) and CYP11B2 mRNA and protein levels. Electrophysiological analyses confirm the loss of inward rectification and increased Na(+) permeability in KCNJ5(T158A)-expressing cells. KCNJ5(T158A) expression also led to the activation of CYP11B2 transcriptional regulators, NURR1 and ATF2. Acutely, KCNJ5(T158A) stimulated the expression of total and phosphorylated steroidogenic acute regulatory protein (StAR). KCNJ5(T158A) expression increased the synthesis of aldosterone and the hybrid steroids 18-hydroxycortisol and 18-oxocortisol, measured with liquid chromatography-tandem mass spectrometry (LC-MS/MS). All of these stimulatory effects of KCNJ5(T158A) were inhibited by the L-type Ca(2+) channel blocker, verapamil. Overall, KCNJ5(T158A)increases CYP11B2 expression and production of aldosterone, corticosterone and hybrid steroids by upregulating both acute and chronic regulatory events in aldosterone production, and verapamil blocks KCNJ5(T158A)-mediated pathways leading to aldosterone production.


Assuntos
Aldosterona/biossíntese , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Mutação , Glândulas Suprarrenais/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular Tumoral , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esteroides/biossíntese , Transcrição Gênica , Transdução Genética
18.
Am J Physiol Heart Circ Physiol ; 308(12): H1463-73, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862830

RESUMO

The understanding of how cardiac ion channels function in the normal and the diseased heart has greatly increased over the last four decades thanks to the advent of patch-clamp technology and, more recently, the emergence of genetics, as well as cellular and molecular cardiology. However, our knowledge of how these membrane-embedded proteins physically interact with each other within macromolecular complexes remains incomplete. This review focuses on how the main cardiac inward sodium channel (NaV1.5) and the strong inward rectifier potassium channel (Kir2.1) function within macromolecular complexes to control cardiac excitability. It has become increasingly clear that these two important ion channel proteins physically interact with multiple other protein partners and with each other from early stages of protein trafficking and targeting through membrane anchoring, recycling, and degradation. Recent findings include compartmentalized regulation of NaV1.5 channel expression and function through a PDZ (postsynaptic density protein, Drosophila disc large tumor suppressor, and zonula occludens-1 protein) domain-binding motif, and interaction of caveolin-3 with Kir2.1 and ankyrin-G as a molecular platform for NaV1.5 signaling. At the cardiomyocyte membrane, NaV1.5 and Kir2.1 interact through at least two distinct PDZ domain-scaffolding proteins (synapse-associated protein-97 and α1-syntrophin), thus modulating reciprocally their cell-surface expression at two different microdomains. Emerging evidence also shows that inheritable mutations in plakophilin-2, ankyrin-G, dystrophin, syntrophin, synapse-associated protein-97, and caveolin-3, among others, modify functional expression and/or localization in the cardiac cell of NaV1.5, Kir2.1 or both to give rise to arrhythmogenic diseases. Unveiling the mechanistic underpinnings of macromolecular interactions should increase our understanding of inherited and acquired arrhythmogenic cardiac diseases and may lead to advances in therapy.


Assuntos
Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Humanos , Microdomínios da Membrana/metabolismo , Complexos Multiproteicos , Transdução de Sinais
19.
Proc Natl Acad Sci U S A ; 112(13): E1669-77, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775566

RESUMO

Current mechanisms of arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia (CPVT) require spontaneous Ca(2+) release via cardiac ryanodine receptor (RyR2) channels affected by gain-of-function mutations. Hence, hyperactive RyR2 channels eager to release Ca(2+) on their own appear as essential components of this arrhythmogenic scheme. This mechanism, therefore, appears inadequate to explain lethal arrhythmias in patients harboring RyR2 channels destabilized by loss-of-function mutations. We aimed to elucidate arrhythmia mechanisms in a RyR2-linked CPVT mutation (RyR2-A4860G) that depresses channel activity. Recombinant RyR2-A4860G protein was expressed equally as wild type (WT) RyR2, but channel activity was dramatically inhibited, as inferred by [(3)H]ryanodine binding and single channel recordings. Mice heterozygous for the RyR2-A4860G mutation (RyR2-A4860G(+/-)) exhibited basal bradycardia but no cardiac structural alterations; in contrast, no homozygotes were detected at birth, suggesting a lethal phenotype. Sympathetic stimulation elicited malignant arrhythmias in RyR2-A4860G(+/-) hearts, recapitulating the phenotype originally described in a human patient with the same mutation. In isoproterenol-stimulated ventricular myocytes, the RyR2-A4860G mutation decreased the peak of Ca(2+) release during systole, gradually overloading the sarcoplasmic reticulum with Ca(2+). The resultant Ca(2+) overload then randomly caused bursts of prolonged Ca(2+) release, activating electrogenic Na(+)-Ca(2+) exchanger activity and triggering early afterdepolarizations. The RyR2-A4860G mutation reveals novel pathways by which RyR2 channels engage sarcolemmal currents to produce life-threatening arrhythmias.


Assuntos
Arritmias Cardíacas/genética , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/genética , Animais , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Coração/fisiologia , Heterozigoto , Homozigoto , Humanos , Isoproterenol/química , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo
20.
Stem Cell Res ; 11(3): 1335-47, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24095945

RESUMO

Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers.


Assuntos
Miosinas Cardíacas/metabolismo , Separação Celular/métodos , Ventrículos do Coração/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Cadeias Leves de Miosina/metabolismo , Adenoviridae/genética , Miosinas Cardíacas/genética , Diferenciação Celular , Linhagem da Célula , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Fenótipo , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA