Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675696

RESUMO

The present study aimed to evaluate the leishmanicidal potential of the essential oil (EO) of Micromeria (M.) nervosa and to investigate its molecular mechanism of action by qPCR. Furthermore, in silicointeraction study of the major M. nervosa EO compounds with the enzyme cytochrome P450 sterol 14α-demethylase (CYP51) was also performed. M. nervosa EO was analyzed by gas chromatography-mass spectrometry (GC-MS). Results showed that α-pinene (26.44%), t-cadinol (26.27%), caryophyllene Oxide (7.73 ± 1.04%), and α-Cadinene (3.79 ± 0.12%) are the major compounds of M. nervosa EO. However, limited antioxidant activity was observed, as this EO was ineffective in neutralizing DPPH free radicals and in inhibiting ß-carotene bleaching. Interestingly, it displayed effective leishmanicidal potential against promastigote (IC50 of 6.79 and 5.25 µg/mL) and amastigote (IC50 of 8.04 and 7.32 µg/mL) forms of leishmania (L.) infantum and L. major, respectively. Molecular mechanism investigation showed that M. nervosa EO displayed potent inhibition on the thiol regulatory pathway. Furthermore, a docking study of the main components of the EO with cytochrome P450 sterol 14α-demethylase (CYP51) enzyme revealed that t-cadinol exhibited the best binding energy values (-7.5 kcal/mol), followed by α-cadinene (-7.3 kcal/mol) and caryophyllene oxide (-7 kcal/mol). These values were notably higher than that of the conventional drug fluconazole showing weaker binding energy (-6.9 kcal/mol). These results suggest that M. nervosa EO could serve as a potent and promising candidate for the development of alternative antileishmanial agent in the treatment of leishmaniasis.


Assuntos
Antiprotozoários , Simulação de Acoplamento Molecular , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Antioxidantes/farmacologia , Antioxidantes/química , Cromatografia Gasosa-Espectrometria de Massas , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Simulação por Computador , Leishmania/efeitos dos fármacos , Leishmania/enzimologia , Monoterpenos Bicíclicos/farmacologia , Monoterpenos Bicíclicos/química
2.
Environ Sci Pollut Res Int ; 31(12): 18566-18578, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349500

RESUMO

Chlorpyrifos (CPF) poisoning is a public health problem for which there is not currently any effective prophylaxis. In this study, we investigated the protective effect of grape seed extract (GSE) against CPF-induced hepatotoxicity. Rats were daily treated either with CPF (2 mg/kg) or CPF and GSE (20 mg/kg) for 1 week, sacrificed, and their livers dissected for biochemical, molecular, and histopathological analyses. CPF generated liver dysfunction by altering carbohydrate, lipid, amino acid, ammonia and urea metabolism, and provoked mitochondrial impairment through disturbing tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and mitochondrial viability. CPF also induced cholinergic excitotoxicity along with oxidative stress and histopathological alterations. Interestingly, treatment with GSE prevented all the detrimental effects of CPF through the regulation of cytochrome P450 (CYP450) gene expression. Molecular docking analysis indicated that GSE-containing polyphenols acted as epigenetic modulators through inhibiting DNA (cytosine-5)-methyltransferase 1 (DNMT1), thus favoring the CYP2C6 detoxification pathway. Thereby, GSE might be a promising strategy in the protection of the liver against CPF toxicity.


Assuntos
Clorpirifos , Extrato de Sementes de Uva , Ratos , Animais , Clorpirifos/farmacologia , Extrato de Sementes de Uva/farmacologia , Extrato de Sementes de Uva/metabolismo , Desintoxicação Metabólica Fase I , Simulação de Acoplamento Molecular , Estresse Oxidativo , Antioxidantes/metabolismo , Fígado
3.
Vet Parasitol ; 322: 110028, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37748374

RESUMO

The goal of this work was to assess the in vitro acaricidal effects of Pistacia lentiscus essential oil and its pure active components against red poultry mites Dermanyssus gallinae as an alternative to chemical acaricide (formamidines). Essential oil was obtained using hydrodistillation and then analyzed using GC-MS. The following major components were identified: α-pinene (20.58 %), D-Limonene (18.16 %), ß-Myrcène (15.06 %), 4-Terpineol (7.68 %), caryophyllene (5.45 %) and γ-terpinene (5.21 %). The toxicity of essential oil and its six monoterpenes were tested at concentrations ranging from 0.43 to 3.50 mg/cm2, using contact and spraying bioassays. Toxicity was expressed as a lethal concentration (LC50 or LC90). The experiment results revealed that activity was method and concentration dependent, and the spraying method was more effective than the contact bioassay for acaricidal activity. In this bioassay, the highest mortality was observed with 4-Terpineol. The LC50 was estimated to be 0.184 mg/cm2 for this substance, followed by α-pinene, the LC50 of which was estimated to be 0.203 mg/cm2. Caryophyllene and γ-terpinene were found less effective in controlling D. gallinae. P. lentiscus oil and its major compounds were also evaluated for anti-acetylcholinesterase (AChE) effects; 4-Terpineol was found to be the most effective AChE inhibitor with IC50 values reaching 18.73 ± 2.83 µg/mL. This framework pointed out the importance of the traditional use of P. lentiscus as an ecofriendly alternative against ectoparasite of veterinary importance; D. gallinae. In vivo trials should also be conducted to assure the safe use of essential oils or individual compounds and to achieve efficient acaricidal property.


Assuntos
Acaricidas , Ácaros , Óleos Voláteis , Pistacia , Animais , Acaricidas/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química
4.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570651

RESUMO

Nanoencapsulation is widely considered as a highly effective strategy to enhance essential oils' (EO) stability by protecting them from oxidative deterioration and evaporation. The present study aims to optimize and characterize an efficient technique for encapsulating Cinnamomum (C.) verum essential oil into chitosan nanoparticles using response surface methodology (RSM). Moreover, the optimized C. verum EO nanoparticle was investigated for its antibacterial (against Gram-positive and Gram-negative bacteria), antifungal (against Candida albicans), and antiparasitic activity (against Leishmania parasites). Five parameters were investigated using a Plackett-Burman and Box-Behnken statistical design: the chitosan molecular weight, TPP concentration, C. verum EO/chitosan ratio, mixing method, and the duration of the reaction. Encapsulation efficiency and anti-candida activity were considered as responses. The antibacterial, anticandidal, and anti-leishmanial activities were also assessed using a standard micro-broth dilution assay and the cytotoxicity assay was assessed against the macrophage cell line RAW 264.7. The optimized nanoparticles were characterized using Fourier transform infrared spectroscopy, Zeta potential, and scanning electron microscopy. The study results indicated that under optimal conditions, the nanoencapsulation of C. verum EO into chitosan nanoparticles resulted in an encapsulation efficiency of 92.58%, with a regular distribution, a nanoparticle size of 480 ± 14.55 nm, and a favorable Zeta potential of 35.64 ± 1.37 mV. The optimized C. verum EO/chitosan nanoparticles showed strong antifungal activity against C. albicans pathogens (CMI = 125 µg mL-1), notable antibacterial activity against both Gram-positive and Gram-negative bacteria (ranging from 125 to 250 µg mL-1), high leishmanicidal potential against the promastigotes form of L. tropica and L. major (IC50 = 10.47 and 15.09 µg mL-1, respectively), and a four-fold cytotoxicity reduction compared to non-encapsulated essential oil. These results suggest that C. verum EO-loaded chitosan nanoparticles could be a promising delivery system for the treatment of cutaneous Candida albicans infections.


Assuntos
Quitosana , Nanopartículas , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Candida , Cinnamomum zeylanicum/química , Antifúngicos/farmacologia , Antifúngicos/química , Quitosana/farmacologia , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Candida albicans , Nanopartículas/química
5.
Vet Parasitol ; 309: 109743, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35714433

RESUMO

The present study evaluated the acaricidal and anthelmintic action of Ocimum basilicum essential oil and its main components against ticks and helminth parasites as well as to relate these activities to acetylcholinesterase inhibition. The in vitro acaricidal activity against Hyalomma scupense was evaluated by Adult Immersion Test (AIT) and Larval Packet Test (LPT), while the in vivo nematocidal potential was assessed in laboratory mice infected with Heligmosomoides polygyrus using fecal egg count reduction (FECR) and total worm count reduction (TWCR). Chemical analyzes were performed by gas chromatography coupled to mass spectrometry (GC-MS). Estragole (80.87%) and linalool (16.12%) were the major compounds detected in O. basilicum essential oil. In the AIT assay for H. scupense tick, LC50 of estragole, O. basilicum oil and linalool were 0.73, 0.81 and 0.97 mg/mL, respectively. In LPT, estragole, linalool and essential oil showed LC50 of 0.22, 1.11 and 1.19 mg/mL, respectively. Against He. polygyrus, the highest activity was observed with estragole administered at 100 mg/kg body weight (bwt), which resulted in a FECR of 90.86% and a TWCR of 82.91%. The O. basilicum essential oil, estragole and linalool inhibited the enzyme acetylcholinesterase (AChE) extracted from both parasites species. Estragole was found the most active AChE inhibitor with IC50 of 0.176 mg/mL for H. scupense and IC50 of 0.138 mg/mL for He. polygyrus larvae. The results of the present study pointed out the importance of the traditional use of O. basilicum as an eco-friendly alternative against endo and ectoparasites. In vivo trials should also be conducted to confirm the above-mentioned activities and to assure the safe use of natural plants.


Assuntos
Acaricidas , Anti-Helmínticos , Ocimum basilicum , Ocimum , Óleos Voláteis , Acaricidas/farmacologia , Acetilcolinesterase , Monoterpenos Acíclicos , Derivados de Alilbenzenos , Animais , Anisóis , Camundongos , Ocimum/química , Ocimum basilicum/química , Óleos Voláteis/química , Óvulo , Óleos de Plantas/farmacologia
6.
Vet Parasitol ; 298: 109507, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34388421

RESUMO

The current study assayed the toxicity of Laurus nobilis essential oil and crude extracts obtained using solvents of increasing polarity (cyclohexane, acetone and ethanol), on two ectoparasites of veterinary importance, i.e., Hyalomma scupense and Dermanyssus gallinae. The major components detected in bay laurel essential oil were dominated by 1.8-cineole (46.56 %), α-terpinenyl acetate (13.99 %), sabinene (7.69), α-pinene (5.75), linalool (5.50), methyleugenol (5.36 %) and ß-pinene (3.97). The highest total phenolic and flavonoids contents were present in the ethalonic extract of L. nobilis leaves at an amount of 152.88 mg gallic acid equivalents per gram of dry weight (GAE/g DW) and 21.77 mg quercetin equivalent per gram of dry weight (QE/g DW), respectively. In vitro acaricidal effects of essensial oil and crude extract of L. nobilis against H. scupense were ascertained by adult immersion test of engorged females (AIT) and larval packet test (LPT) compared with a reference drug amitraz. The essential oil exhibited strong acaricidal activity against tick engorged female and inhibition of hatching eggs. After 24 h of exposure, at the highest tested concentration (100 mg/mL) essential oil induced 90.67 % mortality of H. scupense larvae (LC50 = 10.69 mg/mL). Otherwise, essential oil exhibited high acaricidal activity compared to extracts, and among the extract, the ethanolic extract revealed the highest acaricidal efficacy (81.27 % female mortality). Results from mite contact toxicity showed that essential oil and extracts from L. nobilis were toxic to D. gallinae. Bay essential oil was both more toxic to mites, and faster in exerting this toxicity than other tested crude extracts. L. nobilis essential oil concentration leaded to enhance mortality of D. gallinae reaching the highest (100 %) mortality at 12 h with a concentration of 320 mg/mL. While, ethanolic extract acheived this rate after 24 h of exposure at same concentration. Cyclohexanic extract showed weak acaricidal activity.


Assuntos
Artrópodes , Laurus , Óleos Voláteis , Extratos Vegetais , Acaricidas/farmacologia , Animais , Artrópodes/efeitos dos fármacos , Laurus/química , Gado/parasitologia , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Aves Domésticas/parasitologia , Tunísia
7.
Phytochem Anal ; 31(6): 892-904, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32548910

RESUMO

INTRODUCTION: Synthetic colourants are subject to various allergies. As a result, the use of plant-based additives has proved promising. OBJECTIVE: It is in this perspective that our objective was undertaken to investigate natural colourants from edible cactus. Opuntia species populations were single-sequence repeat (SSR) fingerprinted, the analysis of betalains and phenolic compounds and the evaluation of their biological potentials were also characterised. RESULTS: Photometric quantification of betalains and phenols showed an interspecific variation across Opuntia species. Opuntia ficus indica fruits showed the highest betalain [betaxanthins; 843.67 and betacyanins; 1400 mg/100 g dry weight (DW)] and polyphenol contents. Reversed-phase high-performance liquid chromatography (RP-HPLC) analysis showed that the variation of individual phenols profile was influenced by interspecific and genetic factors. Isorhamnetin-O-(di-deoxyhexosyl-hexoside) was the major compound and its content varied according to Opuntia species, while catechol was the predominant phenolic compound in O. humifusa with 1.88 µg/g DW. Concerning cactus species, Opuntia colourants exhibited a potent antiradical activity [half maximal inhibitory concentration (IC50 ) up to 1 µg/mL]. Opuntia species were effective against Gram-positive and Gram-negative bacterial strains [inhibition zone (IZ) up to 27 mm]. A high genetic diversity within Opuntia genotypes based on SSR markers was revealed. UPGMA (unweighted pair group method with arithmetic mean) dendrogram and PCoA (principal coordinate analysis) based on natural pigments and antimicrobial profiles indicated significant variation. The correlation approach proved the presence of a probably metabolic relationship between genetic markers, pigments and their biological activities. CONCLUSION: A possible association between molecular approach and metabolic profile analysis of Opuntia allows tracing the relationship among species for its genetic conservation.


Assuntos
Produtos Biológicos , Opuntia , Antioxidantes , Betacianinas , Betalaínas , Biodiversidade , Frutas , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA