RESUMO
Accumulating evidence indicates that the gut microbiome influences cancer progression and therapy. We recently showed that progressive changes in gut microbial diversity and composition are closely associated with tobacco-associated lung adenocarcinoma (LUAD) in a human-relevant mouse model. Furthermore, we demonstrated that the loss of the antimicrobial protein Lcn2 in these mice, exacerbates pro-tumor inflammatory phenotypes while further reducing microbial diversity. Yet, how gut microbiome alterations impinge on LUAD development remains poorly understood. Here, we investigated the role of gut microbiome changes in LUAD development using fecal microbiota transfer and delineated a pathway by which gut microbiome alterations incurred by loss of Lcn2 fostered the proliferation of pro-inflammatory bacteria of the genus Alistipes, triggering gut inflammation. This inflammation propagated systemically, exerting immunosuppression within the tumor microenvironment, augmenting tumor growth through an IL-6-dependent mechanism and dampening response to immunotherapy. Corroborating our preclinical findings, we found that patients with LUAD with a higher relative abundance of Alistipes species in the gut showed diminished response to neoadjuvant immunotherapy. These insights reveal the role of microbiome-induced inflammation in LUAD and present new potential targets for interception and therapy.
RESUMO
The gut microbiota drives progression to liver fibrosis, the main determinant of mortality in metabolic dysfunction-associated steatohepatitis (MASH). In this study, we aimed to identify bacterial species associated with protection against liver fibrosis in a high-risk population, and test their potential to protect against liver fibrosis in vivo. Based on stool shotgun metagenomic sequencing of 340 subjects from a population cohort disproportionally affected by MASH, we identified bacterial species from the Bacteroidales and Clostridiales orders associated with reduced risk of liver fibrosis. A bacterial consortium was subsequently tested in a mouse model of MASH, which demonstrated protective effects against liver fibrosis. Six of the eight inoculated bacteria were detected in mouse stool and liver. Intrahepatic presence of bacteria was further confirmed by bacterial culture of mouse liver tissue. Changes in liver histological parameters, gut functional profiles, and amino acid profiles were additionally assessed. Comparison between fibrosis-associated human metagenome and bacteria-induced metagenome changes in mice identified microbial functions likely to mediate the protective effect against liver fibrosis. Amino acid profiling confirmed an increase in cysteine synthase activity, associated with reduced fibrosis. Other microbiota-induced changes in amino acids associated with reduced fibrosis included increased gut asparaginase activity and decreased hepatic tryptophan-to-kynurenine conversion. This human-to-mouse study identified bacterial species and their effects on amino acid metabolism as innovative strategies to protect against liver fibrosis in MASH.
Assuntos
Aminoácidos , Bactérias , Microbioma Gastrointestinal , Cirrose Hepática , Fígado , Animais , Humanos , Cirrose Hepática/microbiologia , Cirrose Hepática/metabolismo , Camundongos , Aminoácidos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Masculino , Fígado/metabolismo , Fígado/patologia , Fígado/microbiologia , Feminino , Fezes/microbiologia , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fígado Gorduroso/metabolismo , Fígado Gorduroso/microbiologia , Modelos Animais de Doenças , Metagenoma , AdultoRESUMO
Acute lower gastrointestinal GVHD (aLGI-GVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation. Although the intestinal microbiota is associated with the incidence of aLGI-GVHD, how the intestinal microbiota impacts treatment responses in aLGI-GVHD has not been thoroughly studied. In a cohort of patients with aLGI-GVHD (n = 37), we found that non-response to standard therapy with corticosteroids was associated with prior treatment with carbapenem antibiotics and a disrupted fecal microbiome characterized by reduced abundances of Bacteroides ovatus. In a murine GVHD model aggravated by carbapenem antibiotics, introducing B. ovatus reduced GVHD severity and improved survival. These beneficial effects of Bacteroides ovatus were linked to its ability to metabolize dietary polysaccharides into monosaccharides, which suppressed the mucus-degrading capabilities of colonic mucus degraders such as Bacteroides thetaiotaomicron and Akkermansia muciniphila, thus reducing GVHD-related mortality. Collectively, these findings reveal the importance of microbiota in aLGI-GVHD and therapeutic potential of B. ovatus.
Assuntos
Bacteroides , Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Doença Enxerto-Hospedeiro/microbiologia , Animais , Bacteroides/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Humanos , Feminino , Masculino , Disbiose/microbiologia , Fezes/microbiologia , Transplante de Células-Tronco Hematopoéticas , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Akkermansia , Adulto , Bacteroides thetaiotaomicron/efeitos dos fármacos , Camundongos Endogâmicos BALB CRESUMO
Acute gastrointestinal intestinal GVHD (aGI-GVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation, and the intestinal microbiota is known to impact on its severity. However, an association between treatment response of aGI-GVHD and the intestinal microbiota has not been well-studied. In a cohort of patients with aGI-GVHD (n=37), we found that non-response to standard therapy with corticosteroids was associated with prior treatment with carbapenem antibiotics and loss of Bacteroides ovatus from the microbiome. In a mouse model of carbapenem-aggravated GVHD, introducing Bacteroides ovatus reduced severity of GVHD and improved survival. Bacteroides ovatus reduced degradation of colonic mucus by another intestinal commensal, Bacteroides thetaiotaomicron, via its ability to metabolize dietary polysaccharides into monosaccharides, which then inhibit mucus degradation by Bacteroides thetaiotaomicron and reduce GVHD-related mortality.
RESUMO
The intestinal microbiota is an important modulator of graft-versus-host disease (GVHD), which often complicates allogeneic hematopoietic stem cell transplantation (allo-HSCT). Broad-spectrum antibiotics such as carbapenems increase the risk for intestinal GVHD, but mechanisms are not well understood. In this study, we found that treatment with meropenem, a commonly used carbapenem, aggravates colonic GVHD in mice via the expansion of Bacteroides thetaiotaomicron (BT). BT has a broad ability to degrade dietary polysaccharides and host mucin glycans. BT in meropenem-treated allogeneic mice demonstrated upregulated expression of enzymes involved in the degradation of mucin glycans. These mice also had thinning of the colonic mucus layer and decreased levels of xylose in colonic luminal contents. Interestingly, oral xylose supplementation significantly prevented thinning of the colonic mucus layer in meropenem-treated mice. Specific nutritional supplementation strategies, including xylose supplementation, may combat antibiotic-mediated microbiome injury to reduce the risk for intestinal GVHD in allo-HSCT patients.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteroides , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Meropeném , Camundongos , Mucinas/metabolismo , Muco/metabolismo , Polissacarídeos/metabolismo , XiloseRESUMO
Gut bacteria modulate the response to immune checkpoint blockade (ICB) treatment in cancer, but the effect of diet and supplements on this interaction is not well studied. We assessed fecal microbiota profiles, dietary habits, and commercially available probiotic supplement use in melanoma patients and performed parallel preclinical studies. Higher dietary fiber was associated with significantly improved progression-free survival in 128 patients on ICB, with the most pronounced benefit observed in patients with sufficient dietary fiber intake and no probiotic use. Findings were recapitulated in preclinical models, which demonstrated impaired treatment response to antiprogrammed cell death 1 (antiPD-1)based therapy in mice receiving a low-fiber diet or probiotics, with a lower frequency of interferon-γpositive cytotoxic T cells in the tumor microenvironment. Together, these data have clinical implications for patients receiving ICB for cancer.
Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/terapia , Probióticos , Animais , Estudos de Coortes , Ácidos Graxos Voláteis/análise , Transplante de Microbiota Fecal , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Imunoterapia , Masculino , Melanoma/imunologia , Melanoma/microbiologia , Melanoma Experimental/imunologia , Melanoma Experimental/microbiologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Intervalo Livre de Progressão , Linfócitos TRESUMO
Bacterial infections are common in cancer patients. Ceftaroline (CFT) is a broad-spectrum cephalosporin with activity against most Gram-positive organisms (GPOs) and many Gram-negative organisms. In this study, the in vitro activity of CFT was compared with vancomycin (VAN), daptomycin (DAP), linezolid (LZD), trimethoprim/sulphamethoxazole (SXT) and tigecycline (TIG) against bacteria (predominantly blood culture isolates) isolated from cancer patients in 2014 and 2015. CFT was active against methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), methicillin-susceptible coagulase-negative staphylococci (MS-CoNS) and methicillin-resistant coagulase-negative staphylococci (MR-CoNS) with MIC90 values (minimum inhibitory concentration that inhibited 90% of the isolates) of 0.25, 2.0, 0.12 and 0.5 mg/L, respectively. MIC90 values for other GPOs were: Bacillus spp., >8.0 mg/L; Corynebacterium spp., 2.0 mg/L; Micrococcus spp., <0.06 mg/L; viridans group streptococci, 0.5 mg/L; Streptococcus pneumoniae, 0.25 mg/L; and Streptococcus spp., <0.06 mg/L. Among the comparator agents, VAN, DAP, TIG and LZD were active against the majority of GPOs tested. CFT also had moderate activity against common extended-spectrum ß-lactamase (ESBL)-negative Gram-negative bacilli such as Enterobacter cloacae, Escherichia coli, Klebsiella spp., Proteus mirabilis and Serratia spp.
Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/microbiologia , Cefalosporinas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Neoplasias/complicações , Bactérias Gram-Negativas/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , CeftarolinaRESUMO
Breast reconstruction surgeries using tissue expanders (TEs) have highly reported infection rates. To decrease this, we developed a method for disinfecting TEs and surgical pockets, where an antimicrobial solution was applied as a solid film at implantation that subsequently liquefied in situ to provide extended prophylaxis. Silicone discs cut from TEs were covered with gelatin-based films containing minocycline (M) and rifampin (R). Discs and films soaked in saline were subsequently challenged with pathogen at days 1, 3, 7, and 10 and quantified for potential biofilm formation. Discs that were not harvested at each specific time points were refreshed with sterile saline. The discs were challenged with clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), and multidrug-resistant Pseudomonas aeruginosa (MDR-PA). Recoveries of adherent organisms from uncovered silicone discs and gelatin-wrapped discs without added antimicrobial agents were >5 × 10(4) CFU/disc for each organism at each time point. Experimental 0.1%M/0.05%R gelatin films completely inhibited all challenge organisms from attaching to the silicone (p < 0.05) at each time point through day 10. Cytotoxicity was assessed by incubating films with HEK-293T human fibroblasts. There were no significant differences in HEK-293T cell survival between controls and any of the antimicrobial films. The in situ liquefying, bioabsorable, antimicrobial wrap prevented biofilm formation by microorganisms on silicone surfaces in vitro with minimal cytotoxicity.