Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38139776

RESUMO

PROteolysis TArgeting Chimera (PROTAC) is an emerging technology in chemical biology and drug discovery. This technique facilitates the complete removal of the target proteins that are "undruggable" or challenging to target through chemical molecules via the Ubiquitin-Proteasome System (UPS). PROTACs have been widely explored and outperformed not only in cancer but also in other diseases. During the past few decades, several academic institutes and pharma companies have poured more efforts into PROTAC-related technologies, setting the stage for several major degrader trial readouts in clinical phases. Despite their promising results, the formation of robust ternary orientation, off-target activity, poor permeability, and binding affinity are some of the limitations that hinder their development. Recent advancements in computational technologies have facilitated progress in the development of PROTACs. Researchers have been able to utilize these technologies to explore a wider range of E3 ligases and optimize linkers, thereby gaining a better understanding of the effectiveness and safety of PROTACs in clinical settings. In this review, we briefly explore the computational strategies reported to date for the formation of PROTAC components and discuss the key challenges and opportunities for further research in this area.

3.
Front Immunol ; 12: 648250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248936

RESUMO

BACKGROUND: The newly identified betacoronavirus SARS-CoV-2 is the causative pathogen of the coronavirus disease of 2019 (COVID-19) that killed more than 3.5 million people till now. The cytokine storm induced in severe COVID-19 patients causes hyper-inflammation, is the primary reason for respiratory and multi-organ failure and fatality. This work uses a rational computational strategy to identify the existing drug molecules to target host pathways to reduce the cytokine storm. RESULTS: We used a "host response signature network" consist of 36 genes induced by SARS-CoV-2 infection and associated with cytokine storm. In order to attenuate the cytokine storm, potential drug molecules were searched against "host response signature network". Our study identified that drug molecule andrographolide, naturally present in a medicinal plant Andrographis paniculata, has the potential to bind with crucial proteins to block the TNF-induced NFkB1 signaling pathway responsible for cytokine storm in COVID-19 patients. The molecular docking method showed the binding of andrographolide with TNF and covalent binding with NFkB1 proteins of the TNF signaling pathway. CONCLUSION: We used a rational computational approach to repurpose existing drugs targeting host immunomodulating pathways. Our study suggests that andrographolide could bind with TNF and NFkB1 proteins, block TNF-induced cytokine storm in COVID-19 patients, and warrant further experimental validation.


Assuntos
Antivirais/farmacologia , COVID-19/imunologia , Síndrome da Liberação de Citocina/imunologia , Diterpenos/farmacologia , Desenvolvimento de Medicamentos/métodos , SARS-CoV-2/fisiologia , Andrographis/imunologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Subunidade p50 de NF-kappa B/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Tratamento Farmacológico da COVID-19
4.
Sci Rep ; 10(1): 12377, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704157

RESUMO

The BLM helicase protein plays a vital role in DNA replication and the maintenance of genomic integrity. Variation in the BLM helicase gene resulted in defects in the DNA repair mechanism and was reported to be associated with Bloom syndrome (BS) and cancer. Despite extensive investigation of helicase proteins in humans, no attempt has previously been made to comprehensively analyse the single nucleotide polymorphism (SNPs) of the BLM gene. In this study, a comprehensive analysis of SNPs on the BLM gene was performed to identify, characterize and validate the pathogenic SNPs using computational approaches. We obtained SNP data from the dbSNP database version 150 and mapped these data to the genomic coordinates of the "NM_000057.3" transcript expressing BLM helicase (P54132). There were 607 SNPs mapped to missense, 29 SNPs mapped to nonsense, and 19 SNPs mapped to 3'-UTR regions. Initially, we used many consensus tools of SIFT, PROVEAN, Condel, and PolyPhen-2, which together increased the accuracy of prediction and identified 18 highly pathogenic non-synonymous SNPs (nsSNPs) out of 607 SNPs. Subsequently, these 18 high-confidence pathogenic nsSNPs were analysed for BLM protein stability, structure-function relationships and disease associations using various bioinformatics tools. These 18 mutants of the BLM protein along with the native protein were further investigated using molecular dynamics simulations to examine the structural consequences of the mutations, which might reveal their malfunction and contribution to disease. In addition, 28 SNPs were predicted as "stop gained" nonsense SNPs and one SNP was predicted as "start lost". Two SNPs in the 3'UTR were found to abolish miRNA binding and thus may enhance the expression of BLM. Interestingly, we found that BLM mRNA overexpression is associated with different types of cancers. Further investigation showed that the dysregulation of BLM is associated with poor overall survival (OS) for lung and gastric cancer patients and hence led to the conclusion that BLM has the potential to be used as an important prognostic marker for the detection of lung and gastric cancer.


Assuntos
Biologia Computacional , Bases de Dados de Proteínas , Modelos Moleculares , Polimorfismo de Nucleotídeo Único , RecQ Helicases , Sítios de Ligação , Estabilidade Enzimática , Humanos , RecQ Helicases/química , RecQ Helicases/genética
5.
Front Oncol ; 8: 592, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581772

RESUMO

Ovarian cancer is a highly lethal and the second highest in mortality among gynecological cancers. Stem cells either naïve or engineered are reported to inhibit various human cancers in both in-vitro and in-vivo. Herein we report the cancer inhibitory properties of human Wharton's jelly stem cell (hWJSC) extracts, namely its conditioned medium (hWJSC-CM) and cell lysate (hWJSC-CL) against two ovarian cancer cell lines (OVCAR3 and SKOV3) in-vitro. Cell metabolic activity assay of OVCAR3 and SKOV3 cells treated with hWJSC-CM (12.5, 25, 50, 75, 100%) and hWJSC-CL (5, 10, 15, 30, and 50 µg/ml) demonstrated concentration dependent inhibition at 24-72 h. Morphological analysis of OVCAR3 and SKOV3 cells treated with hWJSC-CM (50, 75, 100%) and hWJSC-CL (15, 30, and 50 µg/ml) for 24-72 h showed cell shrinkage, membrane damage/blebbings and cell death. Cell cycle assay demonstrated an increase in the sub-G1 and G2M phases of cell cycle following treatment with hWJSC-CM (50, 75, 100%) and hWJSC-CL (10, 15, and 30 µg/ml) at 48 h. Both OVCAR3 and SKOV3 cells demonstrated mild positive expression of activated caspase 3 following treatment with hWJSC-CM (50%) and hWJSC-CL (15 µg/ml) for 24 h. Cell migration of OVCAR3 and SKOV3 cells were inhibited following treatment with hWJSC-CM (50%) and hWJSC-CL (15 µg/ml) for 48 h. Tumor spheres (TS) of OVCAR3 and SKOV3 treated with hWJSC-CM (50, 75, 100%) and hWJSC-CL (10, 15, 30 µg/ml) for 48 h showed altered surface changes including vacuolations and reduction in size of TS. TS of OVCAR3 and SKOV3 also showed the presence of few ovarian cancer stem cells (CSCs) in minimal numbers following treatment with hWJSC-CM (50%) or hWJSC-CL (15 µg/ml) for 48 h. Real-time gene expression analysis of OVCAR3 and SKOV3 treated with hWJSC-CM (50%) or hWJSC-CL (15 µg/ml) for 48 h demonstrated decreased expression of cell cycle regulatory genes (cyclin A2, Cyclin E1), prostaglandin receptor signaling genes (EP2, EP4) and the pro-inflmmatory genes (IL-6, TNF-α) compared to untreated controls. The results indicate that hWJSC-CM and hWJSC-CL inhibit ovarian cancer cells at mild to moderate levels by inducing cellular changes, cell cycle arrest, apoptosis, decreasing the expression of CSC markers and related genes regulation. Therefore, the stem cell factors in hWJSCs extracts can be useful in cancer management.

6.
Front Oncol ; 8: 205, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930913

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most common type of cancer and leading cause of death worldwide. Major risk factors involved in the development of CRC are increased dietary sources, genetics, and increasing age. Purpose of the study was to find the role of different variables in the progression of CRC. METHODOLOGY: 50 blood samples from CRC patients and 20 samples from control were collected. Serum was separated from the blood by centrifugation. This serum was assessed for several antioxidants like superoxide dismutase (SOD), glutathione, glutathione peroxidase, glutathione reductase, catalase, vitamin A, C, and E, and pro-oxidants such as malondialdehyde, advanced oxidation protein products (AOPPs), and AGEs according to their respective protocols. Matrix metalloproteinase-7 (MMP-7) and isoprostanes were assessed by ELISA kits. RESULTS: Lower levels of GSH (4.86 ± 0.78 vs 9.65 ± 1.13 µg/dl), SOD (0.08 ± 0.012 vs 0.46 ± 0.017 µg/dl), CAT (2.45 ± 0.03 vs 4.22 ± 0.19 µmol/mol of protein), and GRx (5.16 ± 0.06 vs 7.23 ± 0.36 µmol/ml) in the diseased group were recorded as compared with control. Higher levels of GPx (6.64 ± 0.19 mmol/dl) were observed in the subjects in comparison with control group (1.58 ± 0.30 mmol/dl). Highly significant decreased levels of vitamin A (0.81 ± 0.07 vs 2.37 ± 0.15 mg/ml), vitamin E (15.42 ± 1.26 vs 25.96 ± 2.19 mg/ml), and vitamin C (47.67 ± 7.69 vs 80.37 ± 10.21 mg/ml) were observed in the patients in contrast to control group. The reversal of antioxidants in later stages of CRC may be due to compensatory mechanisms in cancerous cells. The levels of MDA (nmol/ml) were also assessed, which shows significantly increased level in CRC patients as compared with control groups (3.67 ± 0.19 vs 1.31 ± 0.27). The levels of protein oxidation products [AGEs (2.74 ± 0.16 vs 0.84 ± 0.05 IU) and AOPPs (1.32 ± 0.02 vs 0.82 ± 0.07 ng/ml)] were significantly increased in subjects as compared with control. The levels of MMP-7 (64.75 ± 3.03 vs 50.61 ± 4.09 ng/ml) and isoprostanes (0.71 ± 0.03 vs 0.16 ± 0.02 ng/ml) were also analyzed. This shows that the levels of isoprostanes increased due to high lipid peroxidation mediate higher levels of MMP-7, which promotes development of CRC. CONCLUSION: Following study suggested that elevated oxidative and inflammatory status along with lipid peroxidation and matrix metalloproteinases are the chief contributors in the progression of CRC.

7.
J Biomol Struct Dyn ; 35(10): 2197-2210, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27400444

RESUMO

The present study details the binding process of clofazimine to hen egg white lysozyme (HEWL) using spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), and molecular docking techniques. Clofazimine binds to the protein with binding constant (Kb) in the order of 1.57 × 104 at 298 K. Binding process is spontaneous and exothermic. Molecular docking results suggested the involvement of hydrogen bonding and hydrophobic interactions in the binding process. Bacterial cell lytic activity in the presence of clofazimine increased to more than 40% of the value obtained with HEWL only. Interaction of the drug with HEWL induced ordered secondary structure in the protein and molecular compaction. Clofazimine also effectively inhibited the sodium dodecyl sulfate (SDS) induced amyloid formation in HEWL and caused disaggregation of preformed fibrils, reinforcing the notion that there is involvement of hydrophobic interactions and hydrogen bonding in the binding process of clofazimine with HEWL and clofazimine destabilizes the mature fibrils. Further, TEM images confirmed that fibrillar species were absent in the samples where amyloid induction was performed in the presence of clofazimine. As clofazimine is a drug less explored for the inhibition of fibril formation of the proteins, this study reports the inhibition of SDS-induced amyloid formation of HEWL by clofazimine, which will help in the development of clofazimine-related molecules for the treatment of amyloidosis.


Assuntos
Amiloide/química , Clofazimina/química , Hansenostáticos/química , Muramidase/química , Dodecilsulfato de Sódio/química , Amiloide/antagonistas & inibidores , Animais , Benzotiazóis , Sítios de Ligação , Galinhas , Clara de Ovo/química , Corantes Fluorescentes/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Muramidase/antagonistas & inibidores , Agregados Proteicos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Tiazóis/química
8.
PLoS One ; 11(11): e0167149, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27902750

RESUMO

BACKGROUND: Ovarian cancer is the 5th most common cause of deaths in the women among gynecological tumors. There are many growing evidences that stress and other behavioral factors may affect cancer progression and patient survival. The purpose of this study is to determine the key role of matrix metalloproteinases (MMPs), and cytokines in the aggregation and progression of ovarian cancer. METHODOLOGY: Stress variables (MDA, AGEs, AOPPs, NO), profile of antioxidants (SOD, Catalase, Vitamin E & A, GSH, GRx, GPx) and inflammatory biomarkers (MMP-9, MMP-2, MMP-11, IL-1α and TNF-α) were biochemically assessed from venous blood of fifty ovarian cancer patients and twenty healthy control subjects. The results of all parameters were analyzed statistically by independent sample t-test. RESULTS: The results of the study demonstrated that the levels of stress variables like MDA (3.38±1.12nmol/ml), AGEs (2.72±0.22 ng/ml), AOPPs (128.48±27.23 ng/ml) and NO (58.71±8.67 ng/ml) were increased in the patients of ovarian cancer as compared to control individuals whereas the profile of antioxidants like SOD, Catalase, Vitamin E, Vitamin A, GSH and GRx were decreased in ovarian cancer patients (0.11±0.08 µg/ml, 2.41±1.01µmol/mol of protein, 0.22±0.04 µg/ml, 45.84±9.07µg/ml, 4.88±1.18µg/ml, 5.33±1.26 µmol/ml respectively). But the level of GPx antioxidant was increased in ovarian cancer patients (6.58±0.21µmol/ml). Moreover the levels of MMP-9 (64.87±5.35 ng/ml), MMP-2 (75.87±18.82 ng/ml) and MMP-11 (63.58±8.48 ng/ml) were elevated in the patients. Similarly, the levels of various cytokines TNF-α and IL-1α were also increased in the patients of ovarian cancer (32.17±3.52 pg/ml and 7.04±0.85 pg/ml respectively). CONCLUSION: MMPs are commonly expressed in ovarian cancer which are potential extrapolative biomarkers and have a major role in metastasis. Due to oxidative stress, different cytokines are released by tumor associated macrophages (TAMs) that result in the cancer progression. Consequently, tissue inhibitors of matrix metalloproteinases (TIMPs) are the valuable therapeutic approaches to complement conservative anticancer strategies.


Assuntos
Citocinas/metabolismo , Metaloproteinases da Matriz/metabolismo , Neoplasias Ovarianas/metabolismo , Adulto , Antioxidantes/metabolismo , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem
9.
Front Oncol ; 6: 124, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303656

RESUMO

Philadelphia (Ph) chromosome (9;22)(q34;q11) is well established in more than 90% of chronic myeloid leukemia (CML) patients, and the remaining 5-8% of CML patients show variant and complex translocations, with the involvement of third, fourth, or fifth chromosome other than 9;22. However, in very rare cases, the fourth chromosome is involved. Here, we found a novel case of four-way Ph+ chromosome translocation involving 46,XY,t(4;9;19;22)(q25:q34;p13.3;q11.2) with CML in the chronic phase. Complete blood cell count of the CML patient was carried out to obtain total leukocytes count, hemoglobin, and platelets. Fluorescence in situ hybridization technique was used for the identification of BCR-ABL fusion gene, and cytogenetic test for the confirmation of Ph (9;22)(q34;q11) and the mechanism of variant translocation in the bone marrow. The patient is successfully treated with a dose of 400 mg/day imatinib mesylate (Gleevec). We observed a significant decrease in white blood cell count of 11.7 × 10(9)/L after 48-month follow-up. Patient started feeling better generally. There was a reduction in the swelling of the body, fatigue, and anxiety.

10.
J Neuroimmunol ; 295-296: 47-53, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27235348

RESUMO

Diabetic retinopathy (DR) is the common cause of diabetic vascular complications that leads to the blindness in the working age population throughout the world. Free radicals mediated oxidative stress and inflammation play a significant role in pathophysiology of DR. To find a new and safe drug to treat DR is still challenging and for that purpose the natural compounds may be therapeutic agents. Here we show that sesamin (SES), which is the main component of sesame seed and its oil, and has been reported as potent antioxidant and neuroprotective, could be a therapeutic agent in DR. In the present study, we investigated protective effect of SES in Streptozotocin (STZ) induced DR in mice. The mice were divided into three groups (Control, DR and DR+SES) for the study. After two weeks post-diabetic establishment, mice were treated with SES (30mg/kg BW, i.p, alternate day) for four weeks. Mice body weight and blood glucose level were measured from each group. The microglial activation of retina was determined by immunohistochemistry analysis by using Iba-1 as a microglia marker. Retinal mRNA levels of Iba-1, tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS) and Intercellular Adhesion Molecule 1 (ICAM-1) were examined by qRT-PCR. The level of iNOS protein expression was examined by immunoblotting. Together these data demonstrate that SES treatment lowered the progression of diabetic retinal injury by: 1) decreasing blood glucose level, 2) suppressing microglia activation, 3) reducing retinal TNF-α and ICAM-1 levels and 4) quenching iNOS expression. In conclusion, the results suggest that SES treatment may be of therapeutic benefit in reducing the progression of DR by ameliorating hyperglycemia and inflammation in diabetic retina.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antibióticos Antineoplásicos/toxicidade , Retinopatia Diabética/induzido quimicamente , Retinopatia Diabética/prevenção & controle , Dioxóis/uso terapêutico , Lignanas/uso terapêutico , Estreptozocina/toxicidade , Análise de Variância , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro , Retina/efeitos dos fármacos , Retina/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
PLoS One ; 11(1): e0145780, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26745145

RESUMO

This study has been undertaken to explore the therapeutic effects of deguelin and specific siRNAs in HeLa cells. The data provided clearly show the silencing of ERK 1/2 with siRNAs and inhibition of ERK1/2 with deguelin treatment in HeLa cells. Additionally, we are providing information that deguelin binds directly to anti-apoptotic Bcl-2, Bcl-xl and Mcl-1 in the hydrophobic grooves, thereby releasing BAD and BAX from dimerization with these proteins. This results in increased apoptotic activity through the intrinsic pathway involved in rupture of mitochondrial membrane and release of cytochrome C. Evidence for inhibition of ERK1/2 by deguelin and escape of BAD phosphorylation at serine 112 through ERK/RSK pathway has been further fortified by obtaining similar results by silencing ERK 1/2 each with specific siRNAs. Increase in BAD after treatment with deguelin or siRNAs has been interpreted to mean that deguelin acts through several alternative pathways and therefore can be used as effective therapeutic agent.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Rotenona/análogos & derivados , Proteína de Morte Celular Associada a bcl/metabolismo , Sítios de Ligação , Citocromos c/metabolismo , Células HeLa , Humanos , Membranas Mitocondriais/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Simulação de Acoplamento Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Rotenona/química , Rotenona/farmacologia , Proteína de Morte Celular Associada a bcl/química , Proteína bcl-X/química , Proteína bcl-X/metabolismo
12.
Noncoding RNA Res ; 1(1): 69-76, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30159413

RESUMO

Cancer invasion involves a series of fundamental heterogeneous steps, with each step being distinct in its type regarding its dependence on various oncogenic pathways. Over the past few years, researchers have been focusing on targeted therapies to treat malignancies relying not only on a single oncogenic pathway, but on multiple pathways. Scientists have recently identified potential targets in the human genome considered earlier as non-functional but the discovery of their potential role in gene regulation has put new insights to cancer diagnosis, prognosis and therapeutics. Non coding RNAs (ncRNAs) have been identified as the key gene expression regulators. Long non-coding RNA (lncRNAs) reveal diverse gene expression profiles in benign and metastatic tumours. Improved clinical research may lead to better knowledge of their biogenesis and mechanism and eventually be used as diagnostic biomarkers and therapeutic agents. Small non coding RNAs or micro RNA (miRNA) are capable of reprogramming multiple oncogenic cascades and, thus, can be used as target agents. This review is aimed to give a perspective of non coding transcription in cancer metastasis with an eye on rising clinical relevance of non coding RNAs and their mechanism of action focusing on potential therapeutics for cancer pathogenesis.

13.
Int J Cancer ; 131(9): 2175-86, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22322442

RESUMO

Pancreatic cancer (PC) is the most aggressive malignant disease, ranks as the fourth most leading cause of cancer-related death among men and women in the United States. We present here that plumbagin (PL), a quinoid constituent isolated from the roots of the medicinal plant Plumbago zeylanica L, inhibits the growth of PC cells both in vitro and in vivo model systems. PL treatment induces apoptosis and inhibits cell viability of PC cells (PANC1, BxPC3 and ASPC1). In addition, i.p. administration of PL (2 mg/kg body weight, 5 days a week) in severe combined immunodeficiency (SCID) mice beginning 3 days after ectopic implantation of PANC1 cells resulted in a significant (P < 0.01) inhibition of both tumor weight and volume. PL treatment inhibited (1) constitutive expression of epidermal growth factor receptor (EGFR), pStat3Tyr705 and pStat3Ser727, (2) DNA binding of Stat3 and (3) physical interaction of EGFR with Stat3, in both cultured PANC1 cells and their xenograft tumors. PL treatment also inhibited phosphorylation and DNA-binding activity of NF-κB in both cultured PC cells (PANC1 and ASPC1) and in PANC1 cells xenograft tumors. Downstream target genes (cyclin D1, MMP9 and Survivin) of Stat3 and NF-κB were similarly inhibited. These results suggest that PL may be used as a novel therapeutic agent against human PC. Published 2012 Wiley-Liss, Inc. This article is a US Government work, and, as such, is in the public domain in the United States of America.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Receptores ErbB/metabolismo , NF-kappa B/metabolismo , Naftoquinonas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclina D1/antagonistas & inibidores , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Masculino , Inibidores de Metaloproteinases de Matriz , Camundongos , Camundongos SCID , Fosforilação , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Survivina
14.
Carcinogenesis ; 33(1): 184-90, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072620

RESUMO

Plumbagin (PL) (5-hydroxy-2-methyl-1,4-napthoquinone), a medicinal plant-derived naphthoquinone, was isolated from the roots of the Plumbago zeylanica L. (also known as Chitrak). The roots of P. zeylanica L. have been used in Indian medicine for >2500 years as an anti-atherogenic, cardiotonic, hepatoprotective and neuroprotective agent. We present here that topical application of non-toxic doses (100-500 nmol) of PL to skin elicits dose-dependent inhibition of ultraviolet radiation (UVR)-induced development of squamous cell carcinomas (SCC). In this experiment, FVB/N mice were exposed to UVR (2 kJ/m(2)) three times weekly from a bank of six Kodacel-filtered FS40 sunlamps (∼ 60% UVB and 40% UVA). Carcinoma incidence in mice treated with vehicle, 100, 200 or 500 nmol PL, at 44 weeks post-UVR, were 86, 80 (P = 0.67), 53 (P = 0.12) and 7% (P = 0.0075), respectively. Both vehicle and PL-treated mice gained weight and did not exhibit any signs of toxicity during the entire period of the experiment. Molecular mechanisms associated with inhibition of UVR-induced development of SCC involved induction of apoptosis and inhibition of cell proliferation. Specific findings are that PL treatment (i) inhibited UVR-induced DNA binding of activating protein-1, nuclear factor-kappaB, Stat3 transcription factors and Stat3-regulated molecules (cdc25A and Survivin); (ii) inhibited protein levels of pERK1/2, PI3K85, pAKTSer473, Bcl(2), BclxL, proliferating cell nuclear antigen and cell cycle inhibitory proteins p27 and p21 and (iii) increased UVR-induced Fas-associated death domain expression, poly (ADP-ribose) polymerase protein cleavage and Bax/Bcl(2) ratio. Taken together, our findings suggest that PL may be a novel agent for the prevention of skin cancer.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma de Células Escamosas/prevenção & controle , Naftoquinonas/uso terapêutico , Neoplasias Induzidas por Radiação/prevenção & controle , Neoplasias Cutâneas/prevenção & controle , Animais , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Feminino , Camundongos , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição AP-1/metabolismo , Raios Ultravioleta
15.
Cancer Res ; 71(6): 2318-27, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21406403

RESUMO

Protein kinase C epsilon (PKCε), a novel PKC isoform, is overexpressed in prostate cancer (PCa) and correlates with disease aggressiveness. However, the functional contribution of PKCε to development or progression of PCa remained to be determined. Here we present the first in vivo genetic evidence that PKCε is essential for both the development and metastasis of PCa in the transgenic mouse model of prostate adenocarcinoma (TRAMP). Heterozygous or homozygous genetic deletions of PKCε in FVB/N TRAMP inhibited PCa development and metastasis as analyzed by positron emission tomography/computed tomography, tumor weight determinations, and histopathology. We also examined biomarkers associated with tumor progression in this model, including markers of survival, proliferation, angiogenesis, inflammation, and metastatic progression. To find clues about the genes regulated by PKCε and linked to the Stat3 signaling pathway, we carried out focused PCR arrays of JAK/STAT signaling in excised PCa tissues from PKCε wild-type and nullizygous TRAMP mice. Notably, PKCε loss was associated with significant downregulation of proliferative and metastatic genes C/EBPß (CCAAT/enhancer binding protein ß), CRP (C-reactive protein), CMK, EGFR (epidermal growth factor receptor), CD64, Jun B, and gp130. Taken together, our findings offer the first genetic evidence of the role of PKCε in PCa development and metastasis. PKCε may be potential target for prevention and/or treatment of PCa.


Assuntos
Adenocarcinoma/metabolismo , Modelos Animais de Doenças , Neoplasias da Próstata/metabolismo , Proteína Quinase C-épsilon/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Proteína C-Reativa/genética , Receptores ErbB/genética , Feminino , Expressão Gênica , Humanos , Immunoblotting , Janus Quinases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Metástase Neoplásica , Tomografia por Emissão de Pósitrons , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteína Quinase C-épsilon/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Tomografia Computadorizada por Raios X
16.
BMC Syst Biol ; 4: 169, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21143896

RESUMO

BACKGROUND: Engagement of the antigen receptor on immature B-lymphocytes leads to cell cycle arrest, and subsequent apoptosis. This is an essential process for eliminating self reactive B cells during its different stages of development. However, the mechanism by which it is achieved is not completely understood. RESULTS: Here we employed a systems biology approach that combined extensive experimentation with in silico methodologies to chart the network of receptor-activated pathways that mediated the arrest of immature B cells in the G1 phase of the cell cycle. Interestingly, we found that only a sparse network of signaling intermediates was recruited upon engagement of the antigen receptor. This then led to the activation of a restricted subset of transcription factors, with the consequent induction of genes primarily involved in the cell death pathway. Subsequent experiments revealed that the weak initiation of intracellular signaling pathways derived from desensitization of the receptor-proximal protein tyrosine kinase Lyn, to receptor-dependent activation. Intriguingly, the desensitization was a result of the constitutive activation of this kinase in unstimulated cells, which was likely maintained through a regulatory feedback loop involving the p38 MAP kinase. The high basal activity then attenuated the ability of the antigen receptor to recruit Lyn, and thereby also the downstream signaling intermediates. Finally, integration of these results into a mathematical model provided further substantiation to the novel finding that the ground state of the intracellular signaling machinery constitutes an important determinant of the outcome of receptor-induced cellular responses. CONCLUSIONS: Our results identify the global events leading to the G1 arrest and subsequent apoptosis in immature B cells upon receptor activation.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Ciclo Celular , Receptores de Antígenos de Linfócitos B/metabolismo , Biologia de Sistemas/métodos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Retroalimentação Fisiológica/efeitos dos fármacos , Perfilação da Expressão Gênica , Imidazóis/farmacologia , Camundongos , Piridinas/farmacologia , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA