RESUMO
Virtual reality techniques are now more and more widely used in the field of surgical training. However, the realism of the simulation devices requires a good knowledge of the mechanical behavior of the living organs. To provide perioperative measurement of laparoscopic surgical operations, we equipped a conventional operating grasper with a force sensor and a position sensor. The entire apparatus was connected to a PC that controlled the real-time data acquisition. After calibrating the sensors, we conducted three series of in vivo measurements on animals under video control. A standardized protocol was set up to perform various surgical gestures in a reproducible manner. Under these conditions, we can assess an original tool for a quantitative approach of surgical gestures' mechanics. The preliminary results will be extended by measurements during other operations and with other surgical instruments. The in vivo quantification of the mechanical interactions between operating instruments and anatomical structures is of great interest for the introduction of the force feedback in virtual surgery, for the modeling of the mechanical behavior of living organs, and for the design of new surgical instruments. This quantification of manipulations opens new prospects in the evaluation of surgical practices.