Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 14(3): e14764, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35014179

RESUMO

Despite the clinical benefit of androgen-deprivation therapy (ADT), the majority of patients with advanced prostate cancer (PCa) ultimately develop lethal castration-resistant prostate cancer (CRPC). In this study, we identified thioesterase superfamily member 6 (THEM6) as a marker of ADT resistance in PCa. THEM6 deletion reduces in vivo tumour growth and restores castration sensitivity in orthograft models of CRPC. Mechanistically, we show that the ER membrane-associated protein THEM6 regulates intracellular levels of ether lipids and is essential to trigger the induction of the ER stress response (UPR). Consequently, THEM6 loss in CRPC cells significantly alters ER function, reducing de novo sterol biosynthesis and preventing lipid-mediated activation of ATF4. Finally, we demonstrate that high THEM6 expression is associated with poor survival and correlates with high levels of UPR activation in PCa patients. Altogether, our results highlight THEM6 as a novel driver of therapy resistance in PCa as well as a promising target for the treatment of CRPC.


Assuntos
Antagonistas de Androgênios , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia
2.
Analyst ; 145(15): 5289-5298, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32672252

RESUMO

Intracellular pH (pHi) homeostasis is intertwined with a myriad of normal cellular behaviors as well as pathological processes. As such, small molecule probes for the measurement of pHi are invaluable tools for chemical biology, facilitating the study of the role of pH in cellular function and disease. The field of small molecule pHi sensors has traditionally been dominated with probes based on fluorescent scaffolds. In this study, a series of low molecular weight (<260) oligoyne compounds have been developed which exhibit pH sensitive alkyne stretching frequencies (νalkyne) in Raman spectroscopy. The modular design of the compounds enabled tuneability of their pKa(H) through simple structural modification, such that continuous pH sensitivity is achieved over the range 2-10. Alkyne stretching bands reside in the 'cell-silent' region of the Raman spectrum (1800-2600 cm-1) and are readily detectable in a cellular environment with subcellular spatial resolution. This enabled the application of a pH sensitive oligoyne compound to the ratiometric sensing of pHi in prostate cancer (PC3) cells in response to drug treatment. We propose that probes based on Alkyne Tag Raman Imaging offer an entirely new platform for the sensing of pHi, complementary to fluorescence microscopy.


Assuntos
Alcinos , Análise Espectral Raman , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Espaço Intracelular , Microscopia de Fluorescência
3.
Nat Commun ; 11(1): 2508, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427840

RESUMO

Despite the clinical success of Androgen Receptor (AR)-targeted therapies, reactivation of AR signalling remains the main driver of castration-resistant prostate cancer (CRPC) progression. In this study, we perform a comprehensive unbiased characterisation of LNCaP cells chronically exposed to multiple AR inhibitors (ARI). Combined proteomics and metabolomics analyses implicate an acquired metabolic phenotype common in ARI-resistant cells and associated with perturbed glucose and lipid metabolism. To exploit this phenotype, we delineate a subset of proteins consistently associated with ARI resistance and highlight mitochondrial 2,4-dienoyl-CoA reductase (DECR1), an auxiliary enzyme of beta-oxidation, as a clinically relevant biomarker for CRPC. Mechanistically, DECR1 participates in redox homeostasis by controlling the balance between saturated and unsaturated phospholipids. DECR1 knockout induces ER stress and sensitises CRPC cells to ferroptosis. In vivo, DECR1 deletion impairs lipid metabolism and reduces CRPC tumour growth, emphasizing the importance of DECR1 in the development of treatment resistance.


Assuntos
Metabolismo dos Lipídeos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Neoplasias de Próstata Resistentes à Castração/enzimologia , Antagonistas de Receptores de Andrógenos/administração & dosagem , Progressão da Doença , Homeostase , Humanos , Masculino , Mitocôndrias/enzimologia , Mitocôndrias/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Fosfolipídeos/metabolismo , Próstata/enzimologia , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
4.
J Biophotonics ; 12(5): e201800201, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30246380

RESUMO

There has been increasing use of in vitro cell culture models that more realistically replicate the three-dimensional (3D) environment found in vivo. Multicellular tumor spheroids (MTS) using cell lines or patient-derived organoids have become an important in vitro drug development tool, where cells are grown in a 3D "sphere" that exhibits many of the characteristics found in vivo. Significantly, MTS develop gradients in nutrients and oxygen, commonly found in tumors that contribute to therapy resistance. While MTS show promise as a more realistic in vitro culture model, there is a massive need to improve imaging technologies for assessing biochemical characteristics and drug response in such models to maximize their translation into useful applications such as high throughput screening (HTS). In this study, we investigate the potential for Raman spectroscopy to unveil biochemical information in MTS and have investigated how spheroid age influences drug response, shedding light on increased therapy resistance in developing tumors. The wealth of molecular level information delivered by Raman spectroscopy in a noninvasive manner, could aid translation of these 3D models into HTS applications.


Assuntos
Envelhecimento/patologia , Análise Espectral Raman , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Estaurosporina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imageamento Tridimensional , Células MCF-7 , Esferoides Celulares/metabolismo
5.
Analyst ; 143(24): 5965-5973, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30225477

RESUMO

The ability to probe through barriers and tissue non-invasively is an urgent unmet need in both the security and biomedical imaging fields. Surface enhanced Raman spectroscopy (SERS) has been shown to yield superior enhancement in signal over conventional Raman techniques. Furthermore, by utilising a resonant Raman reporter to produce surface enhanced resonance Raman spectroscopy (SERRS), even greater enhancement in chemical signal can be generated. Here we show the benefit of using red-shifted chalcogenpyrylium based Raman reporters for probing through large thicknesses of plastic and tissue barriers using a conventional Raman instrument. In addition, the benefit of using a resonant Raman reporter for superior levels of through barrier detection is demonstrated, and we aim to show the advantage of using resonant nanotags in combination with conventional Raman spectroscopy to probe through plastic and tissue barriers. Raman signals were collected from SERRS active nanotags through plastic thicknesses of up to 20 mm, as well as the detection of the same SERRS nanotags through up to 10 mm of tissue sections using a handheld conventional Raman spectrometer. The ability to detect SERRS-active nanotags taken up into ex vivo tumour models known as multicellular tumour spheroids (MTS), through depths of 5 mm of tissue is also shown. The advantages of applying multivariate analysis for through barrier detection when discriminating analytes with similar spectral features as the barrier is also clearly demonstrated. To the best of our knowledge, this is the first report of the assessment of the maximum level of through barrier detection using a conventional handheld Raman instrument for SERS applications as well as demonstration of the power of resonant nanotags for probing through barriers using conventional Raman spectroscopy.


Assuntos
Músculos/química , Plásticos/química , Análise Espectral Raman/métodos , Animais , Corantes/análise , Ouro/química , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Polietilenotereftalatos/química , Polipropilenos/química , Análise Espectral Raman/instrumentação , Esferoides Celulares/química , Suínos
6.
Chem Sci ; 9(34): 6935-6943, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30258563

RESUMO

De novo lipid synthesis is upregulated in cancer cells and inhibiting these pathways has displayed anti-tumour activity. Here we use Raman spectroscopy, focusing solely on high wavenumber spectra, to detect changes in lipid composition in single cells in response to drugs targeting de novo lipid synthesis. Unexpectedly, the beta-blocker propranolol showed selectively towards cancerous PC3 compared to non-cancerous PNT2 prostate cells, demonstrating the potential of this approach to identify new anti-cancer drug leads. A unique and simple ratiometric approach for intracellular lipid investigation is reported using statistical analysis to create phenotypic 'barcodes', a globally applicable strategy for Raman drug-cell studies. High wavenumber spectral analysis is compatible with low cost glass substrates, easily translatable into the cytological work stream. The analytical strength of this technique could have a significant impact on cancer treatment through vastly improved understanding of cancer cell metabolism, and thus guide drug design and enhance personalised medicine strategies.

7.
Chem Commun (Camb) ; 54(61): 8530-8533, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30010164

RESUMO

Through utilizing the depth penetration capabilities of SESORS, multiplexed imaging and classification of three singleplex nanotags and a triplex of nanotags within breast cancer tumour models is reported for the first time through depths of 10 mm using a handheld SORS instrument.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Análise Espectral Raman , Propriedades de Superfície
8.
Chem Sci ; 9(15): 3788-3792, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29780511

RESUMO

In order to improve patient survival and reduce the amount of unnecessary and traumatic biopsies, non-invasive detection of cancerous tumours is of imperative and urgent need. Multicellular tumour spheroids (MTS) can be used as an ex vivo cancer tumour model, to model in vivo nanoparticle (NP) uptake by the enhanced permeability and retention (EPR) effect. Surface enhanced spatially offset Raman spectroscopy (SESORS) combines both surface enhanced Raman spectroscopy (SERS) and spatially offset Raman spectroscopy (SORS) to yield enhanced Raman signals at much greater sub-surface levels. By utilizing a reporter that has an electronic transition in resonance with the laser frequency, surface enhanced resonance Raman scattering (SERRS) yields even greater enhancement in Raman signal. Using a handheld SORS spectrometer with back scattering optics, we demonstrate the detection of live breast cancer 3D MTS containing SERRS active NPs through 15 mm of porcine tissue. False color 2D heat intensity maps were used to determine tumour model location. In addition, we demonstrate the tracking of SERRS-active NPs through porcine tissue to depths of up to 25 mm. This unprecedented performance is due to the use of red-shifted chalcogenpyrylium-based Raman reporters to demonstrate the novel technique of surface enhanced spatially offset resonance Raman spectroscopy (SESORRS) for the first time. Our results demonstrate a significant step forward in the ability to detect vibrational fingerprints from a tumour model at depth through tissue. Such an approach offers significant promise for the translation of NPs into clinical applications for non-invasive disease diagnostics based on this new chemical principle of measurement.

9.
Nanoscale ; 8(37): 16710-16718, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27714168

RESUMO

Use of multicellular tumor spheroids (MTS) to investigate therapies has gained impetus because they have potential to mimic factors including zonation, hypoxia and drug-resistance. However, analysis remains difficult and often destroys 3D integrity. Here we report an optical technique using targeted nanosensors that allows in situ 3D mapping of redox potential gradients whilst retaining MTS morphology and function. The magnitude of the redox potential gradient can be quantified as a free energy difference (ΔG) and used as a measurement of MTS viability. We found that by delivering different doses of radiotherapy to MTS we could correlate loss of ΔG with increasing therapeutic dose. In addition, we found that resistance to drug therapy was indicated by an increase in ΔG. This robust and reproducible technique allows interrogation of an in vitro tumor-model's bioenergetic response to therapy, indicating its potential as a tool for therapy development.


Assuntos
Nanoestruturas , Neoplasias/química , Análise Espectral Raman , Esferoides Celulares/química , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Oxirredução , Microambiente Tumoral
10.
Faraday Discuss ; 187: 501-20, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27032696

RESUMO

Measuring markers of stress such as pH and redox potential are important when studying toxicology in in vitro models because they are markers of oxidative stress, apoptosis and viability. While surface enhanced Raman spectroscopy is ideally suited to the measurement of redox potential and pH in live cells, the time-intensive nature and perceived difficulty in signal analysis and interpretation can be a barrier to its broad uptake by the biological community. In this paper we detail the development of signal processing and analysis algorithms that allow SERS spectra to be automatically processed so that the output of the processing is a pH or redox potential value. By automating signal processing we were able to carry out a comparative evaluation of the toxicology of silver and zinc oxide nanoparticles and correlate our findings with qPCR analysis. The combination of these two analytical techniques sheds light on the differences in toxicology between these two materials from the perspective of oxidative stress.


Assuntos
Nanopartículas Metálicas/toxicidade , Análise Espectral Raman/métodos , Testes de Toxicidade/métodos , Algoritmos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Prata/toxicidade , Óxido de Zinco/toxicidade
11.
Analyst ; 140(7): 2321-9, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25485622

RESUMO

The intracellular pH plays an important role in various cellular processes. In this work, we describe a method for monitoring of the intracellular pH in endothelial cells by using surface enhanced Raman spectroscopy (SERS) and 4-mercaptobenzoic acid (MBA) anchored to gold nanoparticles as pH-sensitive probes. Using the Raman microimaging technique, we analysed changes in intracellular pH induced by buffers with acid or alkaline pH, as well as in endothelial inflammation induced by tumour necrosis factor-α (TNFα). The targeted nanosensor enabled spatial pH measurements revealing distinct changes of the intracellular pH in endosomal compartments of the endothelium. Altogether, SERS-based analysis of intracellular pH proves to be a promising technique for a better understanding of intracellular pH regulation in various subcellular compartments.


Assuntos
Espaço Extracelular/química , Células Endoteliais da Veia Umbilical Humana/citologia , Espaço Intracelular/química , Espaço Intracelular/efeitos dos fármacos , Imagem Molecular , Análise Espectral Raman , Fator de Necrose Tumoral alfa/farmacologia , Benzoatos/química , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA