Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(11)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36360307

RESUMO

Estrogens are steroid hormones produced by the aromatization of androgens by the aromatase enzyme, encoded by the CYP19A1 gene. Although generally referred to as "female sex hormones", estrogen is also produced in the adult testes of many mammals, including humans. To better understand the function of estrogens in the male, we used the rabbit model which is an important biomedical model. First, the expression of CYP19A1 transcripts was localized mainly in meiotic germ cells. Thus, testicular estrogen appears to be produced inside the seminiferous tubules. Next, the cells expressing ESR1 and ESR2 were identified, showing that estrogens could exert their function on post-meiotic germ cells in the tubules and play a role during sperm maturation, since ESR1 and ESR2 were detected in the cauda epididymis. Then, CRISPR/Cas9 CYP19A1-/- genetically modified rabbits were analyzed. CYP19A1-/- males showed decreased fertility with lower sperm count associated with hypo-spermatogenesis and lower spermatid number. Germ/sperm cell DNA methylation was unchanged, while sperm parameters were affected as CYP19A1-/- males exhibited reduced sperm motility associated with increased flagellar defects. In conclusion, testicular estrogens could be involved in the spermatocyte-spermatid transition in the testis, and in the acquisition of sperm motility in the epididymis.


Assuntos
Sêmen , Testículo , Humanos , Animais , Masculino , Coelhos , Feminino , Testículo/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Espermatogênese/genética , Estrogênios/metabolismo , Mamíferos
2.
Mol Reprod Dev ; 87(1): 124-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746511

RESUMO

Highly differentiated mature spermatozoa carry not only genetic but also epigenetic information that is to be transmitted to the embryo. DNA methylation is one epigenetic actor associated with sperm nucleus compaction, gene silencing, and prepatterning of embryonic gene expression. Therefore, the stability of this mark toward reproductive biotechnologies is a major issue in animal production. The present work explored the impact of hormonal induction of spermiation and sperm cryopreservation in two cyprinids, the goldfish (Carassius auratus) and the zebrafish (Danio rerio), using LUminometric Methylation Assay (LUMA). We showed that while goldfish hormonal treatment did increase sperm production, it did not alter global DNA methylation of spermatozoa. Different sperm samples repeatedly collected from the same males for 2 months also showed the same global DNA methylation level. Similarly, global DNA methylation was not affected after cryopreservation of goldfish spermatozoa with methanol, whereas less efficient cryoprotectants (dimethylsulfoxide and 1,2-propanediol) decreased DNA methylation. In contrast, cryopreservation of zebrafish spermatozoa with methanol induced a slight, but significant, increase in global DNA methylation. In the less compact nuclei, that is, goldfish fin somatic cells, cryopreservation did not change global DNA methylation regardless of the choice of cryoprotectant. To conclude, global DNA methylation is a robust parameter with respect to biotechnologies such as hormonal induction of spermiation and sperm cryopreservation, but it can be altered when the best sperm manipulation conditions are not met.


Assuntos
Criopreservação/métodos , Metilação de DNA/efeitos dos fármacos , Domperidona/farmacologia , Carpa Dourada/genética , Hormônio Liberador de Gonadotropina/farmacologia , Preservação do Sêmen/métodos , Espermatozoides , Peixe-Zebra/genética , Animais , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Combinação de Medicamentos , Feminino , Fertilização in vitro/métodos , Masculino , Metanol/farmacologia , Oócitos , Propilenoglicol/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 113(51): 14492-14501, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27940919

RESUMO

A major unresolved issue in the cloning of mammals by somatic cell nuclear transfer (SCNT) is the mechanism by which the process fails after embryos are transferred to the uterus of recipients before or during the implantation window. We investigated this problem by using RNA sequencing (RNA-seq) to compare the transcriptomes in cattle conceptuses produced by SCNT and artificial insemination (AI) at day (d) 18 (preimplantation) and d 34 (postimplantation) of gestation. In addition, endometrium was profiled to identify the communication pathways that might be affected by the presence of a cloned conceptus, ultimately leading to mortality before or during the implantation window. At d 18, the effects on the transcriptome associated with SCNT were massive, involving more than 5,000 differentially expressed genes (DEGs). Among them are 121 genes that have embryonic lethal phenotypes in mice, cause defects in trophoblast and placental development, and/or affect conceptus survival in mice. In endometria at d 18, <0.4% of expressed genes were affected by the presence of a cloned conceptus, whereas at d 34, ∼36% and <0.7% of genes were differentially expressed in intercaruncular and caruncular tissues, respectively. Functional analysis of DEGs in placental and endometrial tissues suggests a major disruption of signaling between the cloned conceptus and the endometrium, particularly the intercaruncular tissue. Our results support a "bottleneck" model for cloned conceptus survival during the periimplantation period determined by gene expression levels in extraembryonic tissues and the endometrial response to altered signaling from clones.


Assuntos
Endométrio/metabolismo , Placenta/metabolismo , Prenhez , Transdução de Sinais , Transcriptoma , Animais , Bovinos , Clonagem de Organismos , Implantação do Embrião , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Inseminação Artificial , Técnicas de Transferência Nuclear , Placentação , Gravidez , Fatores de Tempo , Trofoblastos/metabolismo , Útero/metabolismo
4.
Mol Reprod Dev ; 80(12): 977-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038527

RESUMO

We determined if somatic cell nuclear transfer (SCNT) cloning is associated with WNT-related gene expression in cattle development, and if the expression of genes in the WNT pathway changes during the peri-implantation period. Extra-embryonic and endometrial tissues were collected at gestation days 18 and 34 (d18, d34). WNT5A, FZD4, FZD5, LRP5, CTNNB1, GNAI2, KDM1A, BCL2L1, and SFRP1 transcripts were localized in extra-embryonic tissue, whereas SFRP1 and DKK1 were localized in the endometrium. There were no differences in the localization of these transcripts in extra-embryonic tissue or endometrium from SCNT or artificial insemination (AI) pregnancies. Expression levels of WNT5A were 11-fold greater in the allantois of SCNT than AI samples. In the trophoblast, expression of WNT5A, FZD5, CTNNB1, and DKK1 increased significantly from d18 to d34, whereas expression of KDM1A and SFRP1 decreased, indicating that implantation is associated with major changes in WNT signaling. SCNT was associated with altered WNT5A expression in trophoblasts, with levels increasing 2.3-fold more in AI than SCNT conceptuses from d18 to d34. In the allantois, expression of WNT5A increased 6.3-fold more in SCNT than AI conceptuses from d18 to d34. Endometrial tissue expression levels of the genes tested did not differ between AI or SCNT pregnancies, although expression of individual genes showed variation across developmental stages. Our results demonstrate that SCNT is associated with altered expression of specific WNT-related genes in extra-embryonic tissue in a time- and tissue-specific manner. The pattern of gene expression in the WNT pathway suggests that noncanonical WNT signal transduction is important for implantation of cattle conceptuses.


Assuntos
Implantação do Embrião/genética , Endométrio/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Transferência Nuclear , Via de Sinalização Wnt/genética , Alantoide/metabolismo , Animais , Blastocisto/fisiologia , Bovinos , Clonagem de Organismos , Endométrio/metabolismo , Feminino , Expressão Gênica , Inseminação Artificial , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Wnt/biossíntese , Proteínas Wnt/metabolismo
5.
Bioessays ; 32(6): 473-80, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20486133

RESUMO

The H19 gene produces a non-coding RNA, which is abundantly expressed during embryonic development and down-regulated after birth. Although this gene was discovered over 20 years ago, its function has remained unclear. Only recently a role was identified for the non-coding RNA and/or its microRNA partner, first as a tumour suppressor gene in mice, then as a trans-regulator of a group of co-expressed genes belonging to the imprinted gene network that is likely to control foetal and early postnatal growth in mice. The mechanisms underlying this transcriptional or post-transcriptional regulation remain to be discovered, perhaps by identifying the protein partners of the full-length H19 RNA or the targets of the microRNA. This first in vivo evidence of a functional role for the H19 locus provides new insights into how genomic imprinting helps to control embryonic growth.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Impressão Genômica/fisiologia , RNA não Traduzido/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Impressão Genômica/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante , RNA não Traduzido/genética
6.
Stem Cells ; 28(4): 743-52, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20201062

RESUMO

Mouse embryonic pluripotent stem cells can be obtained from the inner cell mass at the blastocyst stage (embryonic stem cells, ESCs) or from the late epiblast of postimplantation embryos (epiblast stem cells, EpiSCs). During normal development, the transition between these two stages is marked by major epigenetic and transcriptional changes including DNA de novo methylation. These modifications represent an epigenetic mark conserved in ESCs and EpiSCs. Pluripotent ESCs derived from blastocysts generated by nuclear transfer (NT) have been shown to be correctly reprogrammed. However, NT embryos frequently undergo abnormal development. In the present study, we have examined whether pluripotent cells could be derived from the epiblast of postimplantation NT embryos and whether the reprogramming process would affect the epigenetic changes occurring at this stage, which could explain abnormal development of NT embryos. We showed that EpiSCs could be derived with the same efficiency from NT embryos and from their fertilized counterparts. However, gene expression profile analyses showed divergence between fertilized- and nuclear transfer-EpiSCs with a surprising bias in the distribution of the differentially expressed genes, 30% of them being localized on chromosome 11. A majority of these genes were downregulated in NT-EpiSCs and imprinted genes represented a significant fraction of them. Notably, analysis of the epigenetic status of a downregulated imprinted gene in NT-EpiSCs revealed complete methylation of the two alleles. Therefore, EpiSCs derived from NT embryos appear to be incorrectly reprogrammed, indicating that abnormal epigenetic marks are imposed on cells in NT embryos during the transition from early to late epiblast.


Assuntos
Camadas Germinativas/metabolismo , Células-Tronco/metabolismo , Animais , Biomarcadores , Linhagem Celular , Proliferação de Células , Forma Celular , Epigênese Genética , Fertilização in vitro , Perfilação da Expressão Gênica , Camadas Germinativas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Transferência Nuclear , Células-Tronco/citologia
7.
Epigenomics ; 2(3): 365-75, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22121898

RESUMO

AIMS: The identification of specific biomarkers for colorectal cancer is of primary importance for early diagnosis. The aim of this study was to evaluate if methylation changes at the IGF2/H19 locus could be predictive for individuals at high risk for developing sporadic or hereditary colorectal cancer. MATERIALS & METHODS: Quantitative methylation analysis using pyrosequencing was performed on three differentially methylated regions (DMRs): IGF2 DMR0 and DMR2 and the H19 DMR in DNA samples from sporadic colorectal cancer (n = 26), familial adenomatous polyposis (n = 35) and hereditary nonpolyposis colorectal cancer (n = 19) patients. RESULTS: We report in this article for the first time, that in sporadic colorectal cancer tumor DNA both the IGF2 DMR0 and DMR2 are hypomethylated, while the H19 DMR retains its monoallelic methylation pattern. In lymphocyte DNA, a striking hypomethylation of nine contiguous correlated CpGs was found in the IGF2 DMR2 but only in familial adenomatous polyposis patients. CONCLUSION: Methylation alterations at the IGF2 locus are more extensive than previously reported and DMR2 hypomethylation in lymphocyte DNA might be a specific epigenetic biomarker for familial adenomatous polyposis patients.


Assuntos
Polipose Adenomatosa do Colo/metabolismo , Biomarcadores/metabolismo , Neoplasias Colorretais/metabolismo , Ilhas de CpG/genética , Metilação de DNA/genética , Fator de Crescimento Insulin-Like II/genética , Análise por Conglomerados , França , Humanos , Linfócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA/métodos , Sulfitos
8.
Proc Natl Acad Sci U S A ; 105(34): 12417-22, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18719115

RESUMO

The H19 locus belongs to a cluster of imprinted genes that is linked to the human Beckwith-Wiedemann syndrome. The expression of H19 and its closely associated IGF2 gene is frequently deregulated in some human tumors, such as Wilms' tumors. In these cases, biallelic IGF2 expression and lack of expression of H19 are associated with hypermethylation of the imprinting center of this locus. These observations and others have suggested a potential tumor suppressor effect of the H19 locus. Some studies have also suggested that H19 is an oncogene, based on tissue culture systems. We show, using in vivo murine models of tumorigenesis, that the H19 locus controls the size of experimental teratocarcinomas, the number of polyps in the Apc murine model of colorectal cancer and the timing of appearance of SV40-induced hepatocarcinomas. The H19 locus thus clearly displays a tumor suppressor effect in mice.


Assuntos
Genes Supressores de Tumor/fisiologia , RNA não Traduzido/fisiologia , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Fator de Crescimento Insulin-Like II , Camundongos , Camundongos Mutantes , Família Multigênica , RNA Longo não Codificante , RNA não Traduzido/classificação , Teratoma/patologia
9.
Reprod Nutr Dev ; 44(5): 499-508, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15636167

RESUMO

The ability of ruminant mammary glands to produce milk is determined by the number of cells secreting milk and their level of activity. Changes in the number of cells in the udder occur during lactation. It has been shown that mammary cells proliferate during this process, while other cells die through apoptosis. The decline in milk production after peak lactation appears to be due to a gradual reduction in the number of milk-secreting cells, either through cell death or by the abrasion of epithelial cells during milk ejection. Other factors are also known to modify cell turnover in the udder, such as reproductive status, growth hormone treatment or milking frequency and nutrition. A description of the effects of husbandry practices makes it possible to envisage different processes for mammary tissue regeneration during lactation. Indeed, changes in milking frequency are capable of modifying the number of epithelial cells in an alveolus, while GH treatment acts on the total number of alveoli. Thus recent studies have demonstrated an heterogeneity of the processes of proliferation and cell death within the mammary gland. However, unanswered questions still remain concerning the presence of stem cells in ruminants, the lifespan of mammary epithelial cells or the relative rate of loss of mammary cells due to apoptosis and epithelial abrasion.


Assuntos
Células Epiteliais/fisiologia , Glândulas Mamárias Animais/citologia , Leite/metabolismo , Criação de Animais Domésticos/métodos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Apoptose , Divisão Celular , DNA/análise , Células Epiteliais/metabolismo , Feminino , Cabras , Lactação , Glândulas Mamárias Animais/metabolismo , RNA/análise
10.
Reprod Nutr Dev ; 42(2): 133-47, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12216959

RESUMO

Secretions collected from the mammary gland of different species contain heterogeneous populations of cells including lymphocytes, neutrophils, macrophages and epithelial cells in different species. Several factors influence the somatic cell count in milk and the distribution of cell types, such as species, infection status, physiological status and management practices. The epithelial cells are shed into milk during the lactation process. Most of them are viable and exhibit the characteristics of fully differentiated alveolar cells. Primary cultures of epithelial cells from colostrum and milk of humans, baboons, cows and goats together with established cell lines from human and goat milk, provide a good model for the study of lactogenesis, immunity transmission, cancer research and infection by viruses. The RNA extracted from milk cells have been shown to be representative of gene expression in the mammary gland and thus provide a source of material for molecular studies of gene expression and environmental interactions.


Assuntos
Células Epiteliais/citologia , Expressão Gênica/fisiologia , Leite/citologia , RNA Mensageiro/genética , Animais , Contagem de Células , Células Epiteliais/fisiologia , Feminino , Humanos , Glândulas Mamárias Animais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA