Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Function (Oxf) ; 5(3): zqae011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706958

RESUMO

Thanks to recent progress in cancer research, most children treated for cancer survive into adulthood. Nevertheless, the long-term consequences of anticancer agents are understudied, especially in the pediatric population. We and others have shown that routinely administered chemotherapeutics drive musculoskeletal alterations, which contribute to increased treatment-related toxicity and long-term morbidity. Yet, the nature and scope of these enduring musculoskeletal defects following anticancer treatments and whether they can potentially impact growth and quality of life in young individuals remain to be elucidated. Here, we aimed at investigating the persistent musculoskeletal consequences of chemotherapy in young (pediatric) mice. Four-week-old male mice were administered a combination of 5-FU, leucovorin, irinotecan (a.k.a., Folfiri) or the vehicle for up to 5 wk. At time of sacrifice, skeletal muscle, bones, and other tissues were collected, processed, and stored for further analyses. In another set of experiments, chemotherapy-treated mice were monitored for up to 4 wk after cessation of treatment. Overall, the growth rate was significantly slower in the chemotherapy-treated animals, resulting in diminished lean and fat mass, as well as significantly smaller skeletal muscles. Interestingly, 4 wk after cessation of the treatment, the animals exposed to chemotherapy showed persistent musculoskeletal defects, including muscle innervation deficits and abnormal mitochondrial homeostasis. Altogether, our data support that anticancer treatments may lead to long-lasting musculoskeletal complications in actively growing pediatric mice and support the need for further studies to determine the mechanisms responsible for these complications, so that new therapies to prevent or diminish chemotherapy-related toxicities can be identified.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Camptotecina/análogos & derivados , Animais , Camundongos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Músculo Esquelético/efeitos dos fármacos , Irinotecano/efeitos adversos , Fluoruracila/efeitos adversos , Fluoruracila/toxicidade , Leucovorina , Camptotecina/efeitos adversos , Camptotecina/toxicidade , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Camundongos Endogâmicos C57BL
2.
Nat Commun ; 12(1): 7056, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862379

RESUMO

Mitochondrial defects are implicated in multiple diseases and aging. Exercise training is an accessible, inexpensive therapeutic intervention that can improve mitochondrial bioenergetics and quality of life. By combining multiple omics techniques with biochemical and in silico normalisation, we removed the bias arising from the training-induced increase in mitochondrial content to unearth an intricate and previously undemonstrated network of differentially prioritised mitochondrial adaptations. We show that changes in hundreds of transcripts, proteins, and lipids are not stoichiometrically linked to the overall increase in mitochondrial content. Our findings suggest enhancing electron flow to oxidative phosphorylation (OXPHOS) is more important to improve ATP generation than increasing the abundance of the OXPHOS machinery, and do not support the hypothesis that training-induced supercomplex formation enhances mitochondrial bioenergetics. Our study provides an analytical approach allowing unbiased and in-depth investigations of training-induced mitochondrial adaptations, challenging our current understanding, and calling for careful reinterpretation of previous findings.


Assuntos
Adaptação Fisiológica , Metabolismo Energético/fisiologia , Treinamento Intervalado de Alta Intensidade , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Trifosfato de Adenosina/biossíntese , Adolescente , Adulto , Biópsia , Transporte de Elétrons/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Músculo Esquelético/citologia , Fosforilação Oxidativa , Proteoma , Qualidade de Vida , Adulto Jovem
3.
Sports Med ; 48(7): 1541-1559, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29675670

RESUMO

Physical inactivity represents the fourth leading risk factor for mortality, and it has been linked with a series of chronic disorders, the treatment of which absorbs ~ 85% of healthcare costs in developed countries. Conversely, physical activity promotes many health benefits; endurance exercise in particular represents a powerful stimulus to induce mitochondrial biogenesis, and it is routinely used to prevent and treat chronic metabolic disorders linked with sub-optimal mitochondrial characteristics. Given the importance of maintaining a healthy mitochondrial pool, it is vital to better characterize how manipulating the endurance exercise dose affects cellular mechanisms of exercise-induced mitochondrial biogenesis. Herein, we propose a definition of mitochondrial biogenesis and the techniques available to assess it, and we emphasize the importance of standardizing biopsy timing and the determination of relative exercise intensity when comparing different studies. We report an intensity-dependent regulation of exercise-induced increases in nuclear peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein content, nuclear phosphorylation of p53 (serine 15), and PGC-1α messenger RNA (mRNA), as well as training-induced increases in PGC-1α and p53 protein content. Despite evidence that PGC-1α protein content plateaus within a few exercise sessions, we demonstrate that greater training volumes induce further increases in PGC-1α (and p53) protein content, and that short-term reductions in training volume decrease the content of both proteins, suggesting training volume is still a factor affecting training-induced mitochondrial biogenesis. Finally, training-induced changes in mitochondrial transcription factor A (TFAM) protein content are regulated in a training volume-dependent manner and have been linked with training-induced changes in mitochondrial content.


Assuntos
Exercício Físico , Músculo Esquelético/fisiologia , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição , Humanos , Mitocôndrias , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA