Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Dysmorphol ; 33(2): 63-68, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441200

RESUMO

Aniridia is an autosomal dominant condition characterized by the complete or partial absence of the iris, often with additional presentations such as foveal hypoplasia, nystagmus, cataract, glaucoma and other ocular abnormalities. Most cases are caused by heterozygous mutations in the paired box 6 gene (PAX6), which codes for a transcription factor that regulates eye development. Four patients from our hospital who presented with ocular phenotypes were recruited for research sequencing with informed consent. Sanger sequencing of PAX6 coding exons or exome sequencing was performed on genomic DNA from venous blood samples. Variants in PAX6 were identified in the four patients. Two variants are recurrent single-nucleotide substitutions - one is a substitution found in a patient with bilateral aniridia, whereas the other is a splice variant in a patient with nystagmus and neuroblastoma. The other two variants are novel and found in two patients with isolated aniridia. Both are small duplications that are predicted to lead to premature termination. For the recurrent variants, the comparison of phenotypes for patients with identical variants would shed light on the mechanisms of pathogenesis, and the discovery of two novel variants expands the spectrum of PAX6 mutations.


Assuntos
Aniridia , Catarata , Humanos , Face , Aniridia/genética , Catarata/genética , Éxons , Sudeste Asiático , Fator de Transcrição PAX6/genética
2.
J Pediatr Genet ; 12(2): 135-140, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37090834

RESUMO

Neurofibromatosis type 1 (NF1) is one of the most common inherited disorders. It is caused by mutations in the neurofibromin-1 gene ( NF1 ) and affects the formation and growth of nerve tissues. More than 3,600 pathogenic variants in the NF1 gene have been identified from patients with most of the germline variants are from the Western populations. We found 16 patients (15 Chinese and 1 Asian Indian) who had heterozygous variants in NF1 through targeted next-generation sequencing. There were 15 different variants: 4 frameshift, 4 nonsense, 5 missense, and 2 splice variants. One nonsense variant and three frameshift variants had never been reported in any population or patient database. Twelve of the 16 patients met the NF1 diagnostic criteria, and each was found to have a pathogenic or likely pathogenic variant. Three different missense variants of unknown significance were discovered in the other four patients who did not meet NF1 diagnostic criteria. Our findings add four novel variants to the list of genetic mutations linked to NF1's various clinical manifestations.

3.
J Clin Invest ; 130(11): 5817-5832, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32750042

RESUMO

Although IKK-ß has previously been shown as a negative regulator of IL-1ß secretion in mice, this role has not been proven in humans. Genetic studies of NF-κB signaling in humans with inherited diseases of the immune system have not demonstrated the relevance of the NF-κB pathway in suppressing IL-1ß expression. Here, we report an infant with a clinical pathology comprising neutrophil-mediated autoinflammation and recurrent bacterial infections. Whole-exome sequencing revealed a de novo heterozygous missense mutation of NFKBIA, resulting in a L34P IκBα variant that severely repressed NF-κB activation and downstream cytokine production. Paradoxically, IL-1ß secretion was elevated in the patient's stimulated leukocytes, in her induced pluripotent stem cell-derived macrophages, and in murine bone marrow-derived macrophages containing the L34P mutation. The patient's hypersecretion of IL-1ß correlated with activated neutrophilia and liver fibrosis with neutrophil accumulation. Hematopoietic stem cell transplantation reversed neutrophilia, restored a resting state in neutrophils, and normalized IL-1ß release from stimulated leukocytes. Additional therapeutic blockade of IL-1 ameliorated liver damage, while decreasing neutrophil activation and associated IL-1ß secretion. Our studies reveal a previously unrecognized role of human IκBα as an essential regulator of canonical NF-κB signaling in the prevention of neutrophil-dependent autoinflammatory diseases. These findings also highlight the therapeutic potential of IL-1 inhibitors in treating complications arising from systemic NF-κB inhibition.


Assuntos
Genes Dominantes , Transplante de Células-Tronco Hematopoéticas , Interleucina-1beta , Hepatopatias , Mutação , Inibidor de NF-kappaB alfa , Imunodeficiência Combinada Severa , Aloenxertos , Animais , Feminino , Células HEK293 , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Hepatopatias/genética , Hepatopatias/imunologia , Hepatopatias/terapia , Masculino , Camundongos , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/imunologia , Neutropenia/genética , Neutropenia/imunologia , Neutropenia/terapia , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/terapia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
5.
Hum Mutat ; 39(1): 23-39, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29068161

RESUMO

The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both. Biallelic, predicted loss-of-function DCC mutations cause developmental split brain syndrome (DSBS). Although the underlying molecular mechanisms leading to disease remain poorly understood, they are thought to stem from reduced or perturbed NTN1 signaling. Here, we review the 26 reported DCC mutations associated with abnormal CNS development in humans, including 14 missense and 12 predicted loss-of-function mutations, and discuss their associated clinical characteristics and diagnostic features. We provide an update on the observed genotype-phenotype relationships of congenital mirror movements, isolated ACC and DSBS, and correlate this to our current understanding of the biological function of DCC in the development of the CNS. All mutations and their associated phenotypes were deposited into a locus-specific LOVD (https://databases.lovd.nl/shared/genes/DCC).


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Genes DCC , Estudos de Associação Genética , Mutação , Fenótipo , Agenesia do Corpo Caloso , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Bases de Dados Genéticas , Humanos , Imageamento por Ressonância Magnética , Modelos Moleculares , Netrina-1/química , Netrina-1/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Síndrome
6.
Nat Genet ; 49(4): 606-612, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250456

RESUMO

Motor, sensory, and integrative activities of the brain are coordinated by a series of midline-bridging neuronal commissures whose development is tightly regulated. Here we report a new human syndrome in which these commissures are widely disrupted, thus causing clinical manifestations of horizontal gaze palsy, scoliosis, and intellectual disability. Affected individuals were found to possess biallelic loss-of-function mutations in the gene encoding the axon-guidance receptor 'deleted in colorectal carcinoma' (DCC), which has been implicated in congenital mirror movements when it is mutated in the heterozygous state but whose biallelic loss-of-function human phenotype has not been reported. Structural MRI and diffusion tractography demonstrated broad disorganization of white-matter tracts throughout the human central nervous system (CNS), including loss of all commissural tracts at multiple levels of the neuraxis. Combined with data from animal models, these findings show that DCC is a master regulator of midline crossing and development of white-matter projections throughout the human CNS.


Assuntos
Encéfalo/anormalidades , Neoplasias Colorretais/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Perda de Heterozigosidade/genética , Mutação/genética , Sistema Nervoso Central/anormalidades , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Neurônios/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Receptores de Superfície Celular/genética
7.
Pediatr Clin North Am ; 62(3): 571-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26022163

RESUMO

Malformations of cortical development (MCDs) are a common cause of neurodevelopmental delay and epilepsy and are caused by disruptions in the normal development of the cerebral cortex. Several causative genes have been identified in patients with MCD. There is increasing evidence of role of de novo mutations, including those occurring post fertilization, in MCD. These somatic mutations may not be detectable by traditional methods of genetic testing performed on blood DNA. Identification of the genetic cause can help in guiding families in future pregnancies. Research has highlighted how elucidation of key molecular pathways can also allow for targeted therapeutic interventions.


Assuntos
Genômica , Malformações do Desenvolvimento Cortical/genética , Criança , Diagnóstico por Imagem , Variação Genética , Humanos , Malformações do Desenvolvimento Cortical/embriologia , Malformações do Desenvolvimento Cortical/terapia , Mutação
9.
N Engl J Med ; 371(8): 733-43, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25140959

RESUMO

BACKGROUND: Although there is increasing recognition of the role of somatic mutations in genetic disorders, the prevalence of somatic mutations in neurodevelopmental disease and the optimal techniques to detect somatic mosaicism have not been systematically evaluated. METHODS: Using a customized panel of known and candidate genes associated with brain malformations, we applied targeted high-coverage sequencing (depth, ≥200×) to leukocyte-derived DNA samples from 158 persons with brain malformations, including the double-cortex syndrome (subcortical band heterotopia, 30 persons), polymicrogyria with megalencephaly (20), periventricular nodular heterotopia (61), and pachygyria (47). We validated candidate mutations with the use of Sanger sequencing and, for variants present at unequal read depths, subcloning followed by colony sequencing. RESULTS: Validated, causal mutations were found in 27 persons (17%; range, 10 to 30% for each phenotype). Mutations were somatic in 8 of the 27 (30%), predominantly in persons with the double-cortex syndrome (in whom we found mutations in DCX and LIS1), persons with periventricular nodular heterotopia (FLNA), and persons with pachygyria (TUBB2B). Of the somatic mutations we detected, 5 (63%) were undetectable with the use of traditional Sanger sequencing but were validated through subcloning and subsequent sequencing of the subcloned DNA. We found potentially causal mutations in the candidate genes DYNC1H1, KIF5C, and other kinesin genes in persons with pachygyria. CONCLUSIONS: Targeted sequencing was found to be useful for detecting somatic mutations in patients with brain malformations. High-coverage sequencing panels provide an important complement to whole-exome and whole-genome sequencing in the evaluation of somatic mutations in neuropsychiatric disease. (Funded by the National Institute of Neurological Disorders and Stroke and others.).


Assuntos
Córtex Cerebral/anormalidades , Análise Mutacional de DNA/métodos , Malformações do Desenvolvimento Cortical/genética , Mutação , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Humanos , Lisencefalia/genética , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/patologia , Heterotopia Nodular Periventricular/genética
10.
Ther Adv Hematol ; 3(5): 299-307, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23616917

RESUMO

Deferiprone is an orally active iron-chelating agent used in the management of transfusion-related hemosiderosis. It has been in clinical use for over 20 years and has been shown to be effective in reducing cardiac iron load and improving cardiac function. As cardiac siderosis is the leading cause of death in patients with transfusion-dependent thalassemia, deferiprone helps to improve the overall prognosis of these patients. It is relatively well tolerated with gastrointestinal symptoms being the commonest side effects. Agranulocytosis (0.5%), neutropenia (9%), thrombocytopenia (up to 45%) and arthropathy (20%) are the most important side effects and may require discontinuation of therapy. Regular monitoring of blood counts is recommended for patients on deferiprone therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA