Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cytokine ; 174: 156457, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38056248

RESUMO

The level of IL-2 increases markedly in serum and central nervous system (CNS) of patients with multiple sclerosis (MS) and animals with experimental allergic encephalomyelitis (EAE). However, mechanisms by which IL-2 is induced under autoimmune demyelinating conditions are poorly understood. The present study underlines the importance of IL-12p40 homodimer (p402), the so-called biologically inactive molecule, in inducing the expression of IL-2 in mouse BV-2 microglial cells, primary mouse and human microglia, mouse peritoneal macrophages, RAW264.7 macrophages, and T cells. Interestingly, we found that p402 and IL-12p70 (IL-12), but not IL-23, dose-dependently induced the production of IL-2 and the expression of IL-2 mRNA in microglial cells. Similarly, p402 also induced the activation of IL-2 promoter in microglial cells and RAW264.7 cells. Among various stimuli tested, p402 was the most potent stimulus followed by IFN-γ, bacterial lipopolysaccharide, HIV-1 gp120, and IL-12 in inducing the activation of IL-2 promoter in microglial cells. Moreover, p402, but not IL-23, increased NFATc2 mRNA expression and the transcriptional activity of NFAT. Furthermore, induction of IL-2 mRNA expression by over-expression of p40, but not by p19, cDNA indicated that p40, but not p19, is responsible for the induction of IL-2 mRNA in microglia. Finally, by using primary microglia from IL to 12 receptor ß1 deficient (IL-12Rß1-/-) and IL-12 receptor ß2 deficient (IL-12Rß2-/-) mice, we demonstrate that p402 induces the expression of IL-2 via IL-12Rß1, but not IL-12Rß2. In experimental autoimmune encephalomyelitis, an animal model of MS, neutralization of p402 by mAb a3-1d led to decrease in clinical symptoms and reduction in IL-2 in T cells and microglia. These results delineate a new biological function of p402, which is missing in the so-called autoimmune cytokine IL-23, and raise the possibility of controlling increased IL-2 and the disease process of MS via neutralization of p402.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Animais , Camundongos , Interleucina-12/metabolismo , Microglia/metabolismo , Interleucina-2/metabolismo , Macrófagos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Interleucina-23
2.
Nat Commun ; 14(1): 4360, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468519

RESUMO

Chemotherapy-induced cardiac damage remains a leading cause of death amongst cancer survivors. Anthracycline-induced cardiotoxicity is mediated by severe mitochondrial injury, but little is known about the mechanisms by which cardiomyocytes adaptively respond to the injury. We observed the translocation of selected mitochondrial tricarboxylic acid (TCA) cycle dehydrogenases to the nucleus as an adaptive stress response to anthracycline-cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes and in vivo. The expression of nuclear-targeted mitochondrial dehydrogenases shifts the nuclear metabolic milieu to maintain their function both in vitro and in vivo. This protective effect is mediated by two parallel pathways: metabolite-induced chromatin accessibility and AMP-kinase (AMPK) signaling. The extent of chemotherapy-induced cardiac damage thus reflects a balance between mitochondrial injury and the protective response initiated by the nuclear pool of mitochondrial dehydrogenases. Our study identifies nuclear translocation of mitochondrial dehydrogenases as an endogenous adaptive mechanism that can be leveraged to attenuate cardiomyocyte injury.


Assuntos
Cardiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiotoxicidade/metabolismo , Cardiopatias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antraciclinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Oxirredutases/metabolismo , Miócitos Cardíacos/metabolismo , Doxorrubicina/farmacologia
3.
Sci Rep ; 12(1): 16488, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182964

RESUMO

Blood-brain barrier (BBB) dysfunction is emerging as a key pathogenic factor in the progression of Alzheimer's disease (AD), where increased microvascular endothelial permeability has been proposed to play an important role. However, the molecular mechanisms leading to increased brain microvascular permeability in AD are not fully understood. We studied brain endothelial permeability in female APPswe/PS1∆E9 (APP/PS1) mice which constitute a transgenic mouse model of amyloid-beta (Aß) amyloidosis and found that permeability increases with aging in the areas showing the greatest amyloid plaque deposition. We performed an unbiased bulk RNA-sequencing analysis of brain endothelial cells (BECs) in female APP/PS1 transgenic mice. We observed that upregulation of interferon signaling gene expression pathways in BECs was among the most prominent transcriptomic signatures in the brain endothelium. Immunofluorescence analysis of isolated BECs from female APP/PS1 mice demonstrated higher levels of the Type I interferon-stimulated gene IFIT2. Immunoblotting of APP/PS1 BECs showed downregulation of the adherens junction protein VE-cadherin. Stimulation of human brain endothelial cells with interferon-ß decreased the levels of the adherens junction protein VE-cadherin as well as tight junction proteins Occludin and Claudin-5 and increased barrier leakiness. Depletion of the Type I interferon receptor in human brain endothelial cells prevented interferon-ß-induced VE-cadherin downregulation and restored endothelial barrier integrity. Our study suggests that Type I interferon signaling contributes to brain endothelial dysfunction in AD.


Assuntos
Doença de Alzheimer , Interferon Tipo I , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Claudina-5/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotélio/metabolismo , Feminino , Humanos , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Camundongos , Camundongos Transgênicos , Ocludina/metabolismo , Placa Amiloide/patologia , RNA/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Proteínas de Junções Íntimas/metabolismo
4.
PLoS One ; 15(1): e0227916, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31961892

RESUMO

BACKGROUND: Colorectal cancer remains a deadly cancer due to metastatic disease. To understand the molecular mechanisms of metastasis in colon cancer, we investigated whether the copper chaperone antioxidant-1 (Atox1) protein plays a role in this process. Recent findings indicate that Atox1 protein has transcription factor activities and plays a vital role in cell proliferation in cancer cells. However, the role of Atox1 in metastasis has not been examined. METHODS: Atox1 expression was determined by immunofluorescence in a tissue microarray generated from a spectrum of CRC patients. Subcellular fractionation of colon cancer cell lines SW480 and SW620 cells was used to examine the cellular location of Atox1 in the face of activin A, a cytokine that stimulates colon cancer metastasis. Atox1 expression was genetically manipulated and cellular migration measured through trans-well assay and proliferation measured by colony formation assays. RESULTS: Here we demonstrate that in patients with metastatic colon cancer, there is a significant increase in the expression of nuclear Atox1. Interestingly, the metastatic CRC cell line SW620 has increased nuclear localization of Atox1 compared to its related non-metastatic cell line SW480. Further, inhibition of endogenous Atox1 by siRNA in SW620 decreased colony formation and reactive oxygen species generation via decreased expression of Atox1 targets cyclin D1 and NADPH oxidase subunit p47 phox, respectively. Additionally, overexpression of nuclear-targeted but not copper binding domain-mutated Atox1 in SW480 cells increased colony formation and cell migration that was further augmented by activin A stimulation, a known enhancer of colon cancer metastasis. CONCLUSIONS: Our findings suggest that nuclear Atox1 might be a new therapeutic target as well as a new biomarker for metastatic colorectal cancer.


Assuntos
Ativinas/metabolismo , Carcinoma , Movimento Celular , Neoplasias do Colo , Proteínas de Transporte de Cobre/fisiologia , Chaperonas Moleculares/fisiologia , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos
5.
Sci Rep ; 7(1): 5569, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717230

RESUMO

Advanced colorectal cancer (CRC) remains a critical health care challenge worldwide. Various TGF-ß superfamily members are important in colorectal cancer metastasis, but their signaling effects and predictive value have only been assessed in isolation. Here, we examine cross-regulation and combined functions of the two most prominent TGF-ß superfamily members activin and TGF-ß in advanced colorectal cancer. In two clinical cohorts we observed by immune-based assay that combined serum and tissue activin and TGF-ß ligand levels predicts outcome in CRC patients and is superior to single ligand assessment. While TGF-ß growth suppression is independent of activin, TGF-ß treatment leads to increased activin secretion in colon cancer cells and TGF-ß induced cellular migration is dependent on activin, indicating pathway cross-regulation and functional interaction in vitro. mRNA expression of activin and TGF-ß pathway members were queried in silico using the TCGA data set. Coordinated ligand and receptor expression is common in solid tumors for activin and TGF-ß pathway members. In conclusion, activin and TGF-ß are strongly connected signaling pathways that are important in advanced CRC. Assessing activin and TGF-ß signaling as a unit yields important insights applicable to future diagnostic and therapeutic interventions.


Assuntos
Ativinas/genética , Ativinas/metabolismo , Neoplasias Colorretais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ativinas/sangue , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Estadiamento de Neoplasias , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Fator de Crescimento Transformador beta/sangue , Regulação para Cima
6.
Oncotarget ; 8(23): 37377-37393, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28418896

RESUMO

Colorectal cancer (CRC) remains a common and deadly cancer due to metastatic disease. Activin and TGFB (TGFß) signaling are growth suppressive pathways that exert non-canonical pro-metastatic effects late in CRC carcinogenesis. We have recently shown that activin downregulates p21 via ubiquitination and degradation associated with enhanced cellular migration independent of SMADs. To investigate the mechanism of metastatic activin signaling, we examined activated NFkB signaling and activin ligand expression in CRC patient samples and found a strong correlation. We hypothesize that activation of the E3 ubiquitin ligase MDM2 by NFkB leads to p21 degradation in response to activin treatment. To dissect the link between activin and pro-carcinogenic NFkB signaling and downstream targets, we found that activin but not TGFB induced activation of NFkB leading to increased MDM2 ubiquitin ligase via PI3K. Further, overexpression of wild type p65 NFkB increased MDM2 expression while the NFkB inhibitors NEMO-binding domain (NBD) and Bay11-7082 blocked the activin-induced increase in MDM2. In conclusion, in colon cancer cell migration, activin utilizes NFkB to induce MDM2 activity leading to the degradation of p21 in a PI3K dependent mechanism. This provides new mechanistic knowledge linking activin and NFkB signaling in advanced colon cancer which is applicable to targeted therapeutic interventions.


Assuntos
Ativinas/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias Colorretais/metabolismo , NF-kappa B/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , Nitrilas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Sulfonas/farmacologia , Ubiquitina-Proteína Ligases/metabolismo
7.
Sci Rep ; 6: 26273, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27197561

RESUMO

BRCA1-associated RING domain protein 1 (BARD1) stabilizes BRCA1 protein by forming a heterodimeric RING-RING complex, and impacts function of BRCA1, including homologous recombination (HR) repair. Although colon cancer cells usually express wild type BRCA1, presence of an oncogenic BARD1 splice variant (SV) in select cancers may render BRCA1 dysfunctional and allow cells to become sensitive to HR targeting therapies. We previously reported association of loss of full-length (FL) BARD1 with poor prognosis in colon cancer as well as expression of various BARD1 SVs with unknown function. Here we show that loss of BARD1 function through the expression of a BARD1 SV, BARD1ß, results in a more malignant phenotype with decreased RAD51 foci formation, reduced BRCA1 E3 ubiquitin ligase activity, and decreased nuclear BRCA1 protein localization. BARD1ß sensitizes colon cancer cells to poly ADP ribose polymerase 1 (PARP-1) inhibition even in a FL BRCA1 background. These results suggest that expression of BARD1ß may serve as a future biomarker to assess suitability of colon cancers for HR targeting with PARP-1 inhibitors in treatment of advanced colon cancer.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína BRCA1/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Recombinação Homóloga , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Processamento de Proteína , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
8.
PLoS One ; 9(8): e103606, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25089827

RESUMO

Alzheimer's disease (AD), the leading cause of dementia in the aging population, is characterized by the presence of neuritic plaques, neurofibrillary tangles and extensive neuronal apoptosis. Neuritic plaques are mainly composed of aggregates of amyloid-ß (Aß) protein while neurofibrillary tangles are composed of the hyperphosphorylated tau protein. Despite intense investigations, no effective therapy is currently available to halt the progression of this disease. Here, we have undertaken a novel approach to attenuate apoptosis and tau phosphorylation in cultured neuronal cells and in a transgenic animal model of AD. RNS60 is a 0.9% saline solution containing oxygenated nanobubbles that is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. In our experiments, fibrillar Aß1-42, but not the reverse peptide Aß42-1, induced apoptosis and cell death in human SHSY5Y neuronal cells. RNS60, but not NS (normal saline), RNS10.3 (TCP-modified saline without excess oxygen) or PNS60 (saline containing excess oxygen without TCP modification), attenuated Aß(1-42)-induced cell death. RNS60 inhibited neuronal cell death via activation of the type 1A phosphatidylinositol-3 (PI-3) kinase-Akt-BAD pathway. Furthermore, RNS60 also decreased Aß(1-42)-induced tau phosphorylation via (PI-3 kinase-Akt)-mediated inhibition of GSK-3ß. Similarly, RNS60 treatment suppressed neuronal apoptosis, attenuated Tau phosphorylation, inhibited glial activation, and reduced the burden of Aß in the hippocampus and protected memory and learning in 5XFAD transgenic mouse model of AD. Therefore, RNS60 may be a promising pharmaceutical candidate in halting or delaying the progression of AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Apoptose/efeitos dos fármacos , Memória/efeitos dos fármacos , Neurônios/patologia , Cloreto de Sódio/farmacologia , Proteínas tau/metabolismo , Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Camundongos , Camundongos Transgênicos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Placa Amiloide/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos
9.
J Biol Chem ; 287(35): 29529-42, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22753407

RESUMO

Chronic inflammation involving activated microglia and astroglia is becoming a hallmark of many human diseases, including neurodegenerative disorders. Although NF-κB is a multifunctional transcription factor, it is an important target for controlling inflammation as the transcription of many proinflammatory molecules depends on the activation of NF-κB. Here, we have undertaken a novel approach to attenuate NF-κB activation and associated inflammation in activated glial cells. RNS60 is a 0.9% saline solution containing charge-stabilized nanostructures that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not normal saline, RNS10.3 (TCP-modified saline without excess oxygen), and PNS60 (saline containing excess oxygen without TCP modification) were found to inhibit the production of nitric oxide (NO) and the expression of inducible NO synthase in activated microglia. Similarly, RNS60 also inhibited the expression of inducible NO synthase in activated astroglia. Inhibition of NF-κB activation by RNS60 suggests that RNS60 exerts its anti-inflammatory effect through the inhibition of NF-κB. Interestingly, RNS60 induced the activation of type IA phosphatidylinositol (PI) 3-kinase and Akt and rapidly up-regulated IκBα, a specific endogenous inhibitor of NF-κB. Inhibition of PI 3-kinase and Akt by either chemical inhibitors or dominant-negative mutants abrogated the RNS60-mediated up-regulation of IκBα. Furthermore, we demonstrate that RNS60 induced the activation of cAMP-response element-binding protein (CREB) via the PI 3-kinase-Akt pathway and that RNS60 up-regulated IκBα via CREB. These results describe a novel anti-inflammatory property of RNS60 via type IA PI 3-kinase-Akt-CREB-mediated up-regulation of IκBα, which may be of therapeutic benefit in neurodegenerative disorders.


Assuntos
NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oxigênio/farmacologia , Cloreto de Sódio/farmacologia , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Camundongos , Microglia , Inibidor de NF-kappaB alfa , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
J Neuroimmune Pharmacol ; 7(3): 544-56, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22661311

RESUMO

Parkinson's disease (PD) is the most common human neurodegenerative disorder affecting movement, balance, flexibility, and coordination. Despite intense investigation, no effective therapy is available to stop the onset PD or halt its progression. The primate model of PD is considered to be one of the best available models for human PD. Since neuroinflammation plays an important role in the pathogenesis of PD and NF-κB, a proinflammatory transcription factor, participates in the transcription of many proinflammatory molecules, this study evaluates the ability of a peptide corresponding to the NF-κB essential modifier (NEMO)-binding domain (NBD) of IκB kinase (IKK)α or IKKß to protect dopaminergic neurons in hemiparkinsonian monkeys. First, we found that NF-κB was activated within the substantia nigra pars compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated hemiparkinsonian monkeys. However, intramuscular injection of wild type NBD (wtNBD) peptide reduced nigral activation of NF-κB and expression of inducible nitric oxide synthase, protected both the nigrostriatal axis and neurotransmitters, and improved motor functions in hemiparkinsonian monkeys. These findings were specific as mutated NBD peptide did not exhibit such effects. These results may help in the translation of NF-κB-based therapy to PD clinics.


Assuntos
NF-kappa B/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Peptídeos/uso terapêutico , Sequência de Aminoácidos , Animais , Feminino , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Macaca mulatta , Dados de Sequência Molecular , NF-kappa B/genética , Transtornos Parkinsonianos/genética , Peptídeos/genética , Peptídeos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
11.
PLoS One ; 7(6): e38113, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723850

RESUMO

Neuroinflammation and oxidative stress underlie the pathogenesis of various neurodegenerative disorders. Here we demonstrate that sodium phenylbutyrate (NaPB), an FDA-approved therapy for reducing plasma ammonia and glutamine in urea cycle disorders, can suppress both proinflammatory molecules and reactive oxygen species (ROS) in activated glial cells. Interestingly, NaPB also decreased the level of cholesterol but involved only intermediates, not the end product of cholesterol biosynthesis pathway for these functions. While inhibitors of both geranylgeranyl transferase (GGTI) and farnesyl transferase (FTI) inhibited the activation of NF-κB, inhibitor of GGTI, but not FTI, suppressed the production of ROS. Accordingly, a dominant-negative mutant of p21(rac), but not p21(ras), attenuated the production of ROS from activated microglia. Inhibition of both p21(ras) and p21(rac) activation by NaPB in microglial cells suggests that NaPB exerts anti-inflammatory and antioxidative effects via inhibition of these small G proteins. Consistently, we found activation of both p21(ras) and p21(rac)in vivo in the substantia nigra of acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. Oral administration of NaPB reduced nigral activation of p21(ras) and p21(rac), protected nigral reduced glutathione, attenuated nigral activation of NF-κB, inhibited nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Consistently, FTI and GGTI also protected nigrostriata in MPTP-intoxicated mice. Furthermore, NaPB also halted the disease progression in a chronic MPTP mouse model. These results identify novel mode of action of NaPB and suggest that NaPB may be of therapeutic benefit for neurodegenerative disorders.


Assuntos
Antioxidantes/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Fenilbutiratos/farmacologia , Animais , Antioxidantes/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Ácido Mevalônico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Atividade Motora/efeitos dos fármacos , NF-kappa B/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Doença de Parkinson/genética , Fenilbutiratos/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
12.
J Neurosci ; 30(38): 12676-89, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20861373

RESUMO

Glial activation plays an important role in the pathogenesis of various neurodegenerative disorders including Alzheimer's disease. However, molecular mechanisms by which activated glia could kill neurons are poorly understood. The present study underlines the importance of neutral sphingomyelinase (N-SMase) in mediating the damaging effect of fibrillar amyloid-ß 1-42 (Aß1-42) peptide-activated astroglia on neurons. In transwell experiments, soluble products released from activated primary human astroglia induced the activation of neutral sphingomyelinase (N-SMase), production of ceramide, and cell death in primary human neurons. Protection of neurons from cytotoxic effects of activated astroglia by antisense knockdown of N-SMase, but not acidic sphingomyelinase (A-SMase), suggests that soluble products released from activated astroglia kill neurons via N-SMase but not A-SMase. Next we examined the role of N-SMase in the activation of human astroglia. Interestingly, knockdown of N-SMase, but not A-SMase, by either antisense oligonucleotides or chemical inhibitor, prevented the induction of proinflammatory molecules [tumor necrosis factor-α, inducible nitric oxide synthase, interleukin-1ß (IL-1ß), and IL-6] and the activation of nuclear factor-κB in Aß1-42-activated astroglia. Subsequently, fibrillar Aß peptides also induced the activation of N-SMase and ceramide in vivo in mouse cortex. Most importantly, antisense knockdown of N-SMase, but not A-SMase, decreased the activation of astroglia and protected neurons from fibrillar Aß toxicity in vivo in the cortex. Together, it is apparent that both the activation of astroglia by Aß and that the cytotoxicity of activated astroglia on neurons depend on N-SMase.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Astrócitos/patologia , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Astrócitos/metabolismo , Morte Celular , Células Cultivadas , Ceramidas/metabolismo , Técnicas de Cocultura , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Imuno-Histoquímica , Camundongos , Neurônios/metabolismo , Fragmentos de Peptídeos/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
J Biol Chem ; 279(49): 51451-9, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15452132

RESUMO

Alzheimer's disease is a major illness of dementia characterized by the presence of amyloid plaques, neurofibrillary tangles, and extensive neuronal apoptosis. However, the mechanism behind neuronal apoptosis in the Alzheimer's-diseased brain is poorly understood. This study underlines the importance of neutral sphingomyelinase in fibrillar Abeta peptide-induced apoptosis and cell death in human primary neurons. Abeta1-42 peptides induced the activation of sphingomyelinases and the production of ceramide in neurons. Interestingly, neutral (N-SMase), but not acidic (A-SMase), sphingomyelinase was involved in Abeta1-42-mediated neuronal apoptosis and cell death. Abeta1-42-induced production of ceramide was redox-sensitive, as reactive oxygen species were involved in the activation of N-SMase but not A-SMase. Abeta1-42 peptides induced the NADPH oxidase-mediated production of superoxide radicals in neurons that was involved in the activation of N-SMase, but not A-SMase, via hydrogen peroxide. Consistently, superoxide radicals generated by hypoxanthine and xanthine oxidase also induced the activation of N-SMase, but not A-SMase, through a catalase-sensitive pathway. Furthermore, antisense knockdown of p22phox, a subunit of NADPH oxidase, inhibited Abeta1-42-induced neuronal apoptosis and cell death. These studies suggest that fibrillar Abeta1-42 peptides induce neuronal apoptosis through the NADPH oxidase-superoxide-hydrogen peroxide-NS-Mase-ceramide pathway.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/fisiologia , NADPH Oxidases/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/fisiologia , Peptídeos/química , Esfingomielina Fosfodiesterase/metabolismo , Peptídeos beta-Amiloides/química , Apoptose , Sobrevivência Celular , Células Cultivadas , Ceramidas/química , Ceramidas/metabolismo , DNA/química , Diacilglicerol Quinase/metabolismo , Ativação Enzimática , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Hipoxantina/química , Marcação In Situ das Extremidades Cortadas , Lipídeos/química , Proteínas de Membrana Transportadoras/metabolismo , NADPH Desidrogenase/metabolismo , Oligonucleotídeos Antissenso/química , Oxirredução , Oxigênio/metabolismo , Fragmentos de Peptídeos/química , Fosfoproteínas/metabolismo , Espécies Reativas de Oxigênio , Superóxidos/química , Fatores de Tempo , Xantina Oxidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA