Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 786173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069485

RESUMO

Multidrug-resistant pathogens constitute a serious global issue and, therefore, novel antimicrobials with new modes of action are urgently needed. Here, we investigated the effect of a phenothiazine derivative (JBC 1847) with high antimicrobial activity on Staphylococcus aureus, using a wide range of in vitro assays, flow cytometry, and RNA transcriptomics. The flow cytometry results showed that JBC 1847 rapidly caused depolarization of the cell membrane, while the macromolecule synthesis inhibition assay showed that the synthesis rates of DNA, RNA, cell wall, and proteins, respectively, were strongly decreased. Transcriptome analysis of S. aureus exposed to sub-inhibitory concentrations of JBC 1847 identified a total of 78 downregulated genes, whereas not a single gene was found to be significantly upregulated. Most importantly, there was downregulation of genes involved in adenosintrifosfat (ATP)-dependent pathways, including histidine biosynthesis, which is likely to correlate with the observed lower level of intracellular ATP in JBC 1847-treated cells. Furthermore, we showed that JBC 1847 is bactericidal against both exponentially growing cells and cells in a stationary growth phase. In conclusion, our results showed that the antimicrobial properties of JBC 1847 were primarily caused by depolarization of the cell membrane resulting in dissipation of the proton motive force (PMF), whereby many essential bacterial processes are affected. JBC 1847 resulted in lowered intracellular levels of ATP followed by decreased macromolecule synthesis rate and downregulation of genes essential for the amino acid metabolism in S. aureus. Bacterial compensatory mechanisms for this proposed multi-target activity of JBC 1847 seem to be limited based on the observed very low frequency of resistance toward the compound.

2.
Sci Rep ; 9(1): 17834, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780689

RESUMO

We previously showed that doxycycline (DOX) and carprofen (CPF), a veterinary non-steroidal anti-inflammatory drug, have synergistic antimicrobial activity against methicillin-resistant Staphylococcus pseudintermedius (MRSP) carrying the tetracycline resistance determinant TetK. To elucidate the molecular mechanism of this synergy, we investigated the effects of the two drugs, individually and in combination, using a comprehensive approach including RNA sequencing, two-dimensional differential in-gel electrophoresis, macromolecule biosynthesis assays and fluorescence spectroscopy. Exposure of TetK-positive MRSP to CPF alone resulted in upregulation of pathways that generate ATP and NADH, and promote the proton gradient. We showed that CPF is a proton carrier that dissipates the electrochemical potential of the membrane. In the presence of both CPF and DOX, the energy compensation strategy was attenuated by downregulation of all the processes involved, such as citric acid cycle, oxidative phosphorylation and ATP-providing arginine deiminase pathway. Furthermore, protein biosynthesis inhibition increased from 20% under DOX exposure alone to 75% upon simultaneous exposure to CPF. We conclude that synergistic interaction of the drugs restores DOX susceptibility in MRSP by compromising proton-motive-force-dependent TetK-mediated efflux of the antibiotic. MRSP is unable to counterbalance CPF-mediated PMF depletion by cellular metabolic adaptations, resulting in intracellular accumulation of DOX and inhibition of protein biosynthesis.


Assuntos
Antibacterianos/farmacologia , Carbazóis/farmacologia , Doxiciclina/farmacologia , Farmacorresistência Bacteriana Múltipla , Prótons , Staphylococcus/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Sinergismo Farmacológico , Transporte de Íons , Proteínas de Membrana Transportadoras/metabolismo , Resistência a Meticilina , NADP/metabolismo , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Resistência a Tetraciclina
3.
Artigo em Inglês | MEDLINE | ID: mdl-31334131

RESUMO

Synthetic peptidomimetics may be designed to mimic functions of antimicrobial peptides, including potentiation of antibiotics, yet possessing improved pharmacological properties. Pairwise screening of 42 synthetic peptidomimetics combined with the antibiotics azithromycin and rifampicin in multidrug-resistant (MDR) Escherichia coli ST131 and Klebsiella pneumoniae ST258 led to identification of two subclasses of α-peptide/ß-peptoid hybrids that display synergy with azithromycin and rifampicin (fractional inhibitory concentration indexes of 0.03-0.38). Further screening of the best three peptidomimetics in combination with a panel of 21 additional antibiotics led to identification of peptidomimetics that potentiated ticarcillin/clavulanate and erythromycin against E. coli, and clindamycin against K. pneumoniae. The study of six peptidomimetics was extended to Pseudomonas aeruginosa, confirming synergy with antibiotics for five of them. The most promising compound, H-(Lys-ßNPhe)8-NH2, exerted only a minor effect on the viability of mammalian cells (EC50 ≥ 124-210 µM), and thus exhibited the highest selectivity toward bacteria. This compound also synergized with rifampicin and azithromycin at sub-micromolar concentrations (0.25-0.5 µM), thereby inducing susceptibility to these antibiotics at clinically relevant concentrations in clinical MDR isolates. This peptidomimetic lead and its analogs constitute promising candidates for efficient repurposing of rifampicin and azithromycin against Gram-negative pathogens.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Peptidomiméticos/farmacologia , Rifampina/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Células Hep G2 , Humanos , Klebsiella pneumoniae , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Pseudomonas aeruginosa/efeitos dos fármacos
4.
Sci Rep ; 9(1): 3679, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842436

RESUMO

Integumentary infections like pyoderma represent the main reason for antimicrobial prescription in dogs. Staphylococcus pseudintermedius and Pseudomonas aeruginosa are frequently identified in these infections, and both bacteria are challenging to combat due to resistance. To avoid use of important human antibiotics for treatment of animal infections there is a pressing need for novel narrow-spectrum antimicrobial agents in veterinary medicine. Herein, we characterize the in vitro activity of the novel peptide-peptoid hybrid B1 against canine isolates of S. pseudintermedius and P. aeruginosa. B1 showed potent minimum inhibitory concentrations (MICs) against canine S. pseudintermedius and P. aeruginosa isolates as well rapid killing kinetics. B1 was found to disrupt the membrane integrity and affect cell-wall synthesis in methicillin-resistant S. pseudintermedius (MRSP). We generated 28 analogues of B1, showing comparable haemolysis and MICs against MRSP and P. aeruginosa. The most active analogues (23, 26) and B1 were tested against a collection of clinical isolates from canine, of which only B1 showed potent activity. Our best compound 26, displayed activity against P. aeruginosa and S. pseudintermedius, but not the closely related S. aureus. This work shows that design of target-specific veterinary antimicrobial agents is possible, even species within a genus, and deserves further exploration.


Assuntos
Antibacterianos/farmacologia , Doenças do Cão/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Dermatopatias Bacterianas/microbiologia , Dermatopatias Bacterianas/veterinária , Staphylococcus/efeitos dos fármacos , Animais , Antibacterianos/química , Cães , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/farmacologia , Peptoides/química , Peptoides/farmacologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/veterinária , Pseudomonas aeruginosa/patogenicidade , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/veterinária , Staphylococcus/patogenicidade , Relação Estrutura-Atividade
5.
Int J Antimicrob Agents ; 53(6): 868-872, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30447380

RESUMO

Gram-negative bacterial pathogens are intrinsically resistant to several antibiotics that are not able to penetrate the cell envelope barrier. The aim of this study was to identify peptides that at low concentrations induce susceptibility to these antibiotics in multidrug-resistant (MDR) Gram-negative bacterial strains of clinical relevance. Pairwise screening of 34 diverse peptides and four antibiotics (erythromycin, linezolid, rifampicin and vancomycin) with primary activity against Gram-positive bacteria identified 4 peptides that at submicromolar concentrations conferred susceptibility to rifampicin or erythromycin in Escherichia coli ATCC 25922. The identified peptides exhibited synergy with azithromycin and potentiated clindamycin in MDR E. coli ST131 and Klebsiella pneumoniae ST258. The low cytotoxicity toward eukaryotic cells (IC50 > 50 µM) observed for two of these peptides (KLWKKWKKWLK-NH2 and GKWKKILGKLIR-NH2) prompted synthesis and evaluation of the corresponding all-d analogues (D1 and D2), which retained similar synergistic antibacterial profiles. Low concentrations of D1 and D2 in combination with azithromycin and rifampicin inhibited growth of most clinical E. coli, K. pneumoniae and Acinetobacter baumannii strains tested. These data demonstrate that combinatorial screening at low peptide concentrations constitutes an efficient approach to identify clinically relevant peptide-antibiotic combinations. In vivo pharmacokinetic/pharmacodynamic and toxicity studies are needed to further validate the use of the peptides identified in this study for repurposing azithromycin and rifampicin against Gram-negative pathogens.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Peptídeos/farmacologia , Rifampina/farmacologia , Acinetobacter baumannii , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli , Células Eucarióticas/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Klebsiella pneumoniae , Peptídeos/toxicidade
6.
Antimicrob Agents Chemother ; 60(10): 5995-6002, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458225

RESUMO

The envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measure Escherichia coli envelope permeability to a ß-galactosidase chromogenic substrate. The signal produced by cytoplasmic ß-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds and E. coli gene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinct E. coli strains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 µM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R > 0.5 µg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.


Assuntos
Parede Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Peptídeos/farmacologia , Peptidomiméticos/farmacologia , beta-Galactosidase/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Parede Celular/química , Parede Celular/metabolismo , Compostos Cromogênicos/química , Compostos Cromogênicos/metabolismo , Eritromicina/farmacologia , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Ácido Fusídico/farmacologia , Expressão Gênica , Hidrólise , Testes de Sensibilidade Microbiana , Mutação , Nitrofenilgalactosídeos/química , Nitrofenilgalactosídeos/metabolismo , Novobiocina/farmacologia , Biblioteca de Peptídeos , Peptídeos/química , Peptidomiméticos/química , Permeabilidade/efeitos dos fármacos , Rifampina/farmacologia , beta-Galactosidase/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
7.
J Bacteriol ; 193(20): 5649-57, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21840979

RESUMO

The TonB system of Gram-negative bacteria provides passage across the outer membrane (OM) diffusion barrier that otherwise limits access to large, scarce, or important nutrients. In Escherichia coli, the integral cytoplasmic membrane (CM) proteins TonB, ExbB, and ExbD couple the CM proton motive force (PMF) to active transport of iron-siderophore complexes and vitamin B(12) across the OM through high-affinity transporters. ExbB is an integral CM protein with three transmembrane domains. The majority of ExbB occupies the cytoplasm. Here, the importance of the cytoplasmic ExbB carboxy terminus (residues 195 to 244) was evaluated by cysteine scanning mutagenesis. D211C and some of the substitutions nearest the carboxy terminus spontaneously formed disulfide cross-links, even though the cytoplasm is a reducing environment. ExbB N196C and D211C substitutions were converted to Ala substitutions to stabilize them. Only N196A, D211A, A228C, and G244C substitutions significantly decreased ExbB activity. With the exception of ExbB(G244C), all of the substituted forms were dominant. Like wild-type ExbB, they all formed a formaldehyde cross-linked tetramer, as well as a tetramer cross-linked to an unidentified protein(s). In addition, they could be formaldehyde cross-linked to ExbD and TonB. Taken together, the data suggested that they assembled normally. Three of four ExbB mutants were defective in supporting both the PMF-dependent formaldehyde cross-link between the periplasmic domains of TonB and ExbD and the proteinase K-resistant conformation of TonB. Thus, mutations in a cytoplasmic region of ExbB prevented a periplasmic event and constituted evidence for signal transduction from cytoplasm to periplasm in the TonB system.


Assuntos
Citoplasma/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Membrana/metabolismo , Mutação , Periplasma/metabolismo , Reagentes de Ligações Cruzadas/química , Citoplasma/química , Citoplasma/genética , Escherichia coli/química , Escherichia coli/metabolismo , Formaldeído/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Periplasma/química , Periplasma/genética , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA