Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 74(21): 6760-6772, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37603044

RESUMO

Antiviral RNAi is the main protective measure employed by plants in the fight against viruses. The main steps of this process have been clarified in recent years, primarily relying on the extensive genetic resources of Arabidopsis thaliana. Our knowledge of viral diseases of crops, however, is still limited, mainly due to the fact that A. thaliana is a non-host for many agriculturally important viruses. In contrast, Nicotiana benthamiana has an unparalleled susceptibility to viruses and, since it belongs to the Solanaceae family, it is considered an adequate system for modeling infectious diseases of crops such as tomatoes. We used a series of N. benthamiana mutants created by genome editing to analyze the RNAi response elicited by the emerging tomato pathogen, pepino mosaic virus (PepMV). We uncovered hierarchical roles of several Argonaute proteins (AGOs) in anti-PepMV defense, with the predominant contribution of AGO2. Interestingly, the anti-PepMV activities of AGO1A, AGO5, and AGO10 only become apparent when AGO2 is mutated. Taken together, our results prove that hierarchical actions of several AGOs are needed for the plant to build effective anti-PepMV resistance. The genetic resources created here will be valuable assets for analyzing RNAi responses triggered by other agriculturally important pathogenic viruses.


Assuntos
Arabidopsis , Solanum lycopersicum , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Nicotiana/metabolismo , Interferência de RNA , Solanum lycopersicum/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Antivirais , Doenças das Plantas/genética
2.
J Pharm Biomed Anal ; 235: 115611, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37542828

RESUMO

Enrichment of pharmaceutically important vinca alkaloids, vinblastine and vincristine, in the leaves of Madagascar periwinkle (Catharanthus roseus) plants through different pre- or postharvest treatments or cultivation conditions, e.g., exposing the plants to UV-irradiation, has been in focus for decades. Controlled LED environment in the visible light range offers the possibility of monitoring the changes in the concentration of metabolites in the vinca alkaloid-related pathway without involving UV-related abiotic stress. In the frame of our targeted metabolomics approach, 64 vinca alkaloids and metabolites were screened with the help of a UPLC-ESI-QTOF-MS instrumental setup from the leaf extracts of C. roseus plants grown in chambers under control (medium light), low light, and high blue / high red/ high far-red conditions. Out of the 14 metabolites that could be assigned either unambiguously with authentic standards or tentatively with high resolution mass spectrometry-based methods, all three dimer vinca alkaloids, that is, 3',4'-anhydrovinblastine, vinblastine and vincristine showed an at least nine-fold enrichment under high blue irradiation when compared with the control conditions: final concentrations of 961 mg kg-1 dry weight, 33.8 mg kg-1 dry weight, and 11.7 mg kg-1 dry weight could be achieved, respectively. As supported by multivariate statistical analysis, the key metabolites of the vinca alkaloid pathway were highly represented among the metabolites that were specifically stimulated by high blue light application.


Assuntos
Antineoplásicos , Catharanthus , Alcaloides de Vinca , Alcaloides de Vinca/análise , Alcaloides de Vinca/metabolismo , Vimblastina/metabolismo , Catharanthus/metabolismo , Vincristina , Antineoplásicos/metabolismo , Metabolômica
3.
Plants (Basel) ; 12(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986924

RESUMO

High voltage electrical discharge (HVED) is an eco-friendly low-cost method based on the creation of plasma-activated water (PAW) through the release of electrical discharge in water which results in the formation of reactive particles. Recent studies have reported that such novel plasma technologies promote germination and growth but their hormonal and metabolic background is still not known. In the present work, the HVED-induced hormonal and metabolic changes were studied during the germination of wheat seedlings. Hormonal changes including abscisic acid (ABA), gibberellic acids (GAs), indol acetic acid (IAA) and jasmonic acid (JA) and the polyphenol responses were detected in the early (2nd day) and late (5th day) germination phases of wheat as well as their redistribution in shoot and root. HVED treatment significantly stimulated germination and growth both in the shoot and root. The root early response to HVED involved the upregulation of ABA and increased phaseic and ferulic acid content, while the active form of gibberellic acid (GA1) was downregulated. In the later phase (5th day of germination), HVED had a stimulatory effect on the production of benzoic and salicylic acid. The shoot showed a different response: HVED induced the synthesis of JA_Le_Ile, an active form of JA, and provoked the biosynthesis of cinnamic, p-coumaric and caffeic acid in both phases of germination. Surprisingly, in 2-day-old shoots, HVED decreased the GA20 levels, being intermediate in the synthesis of bioactive gibberellins. These HVED-provoked metabolic changes indicated a stress-related response that could contribute to germination in wheat.

4.
Saudi J Biol Sci ; 28(10): 5568-5578, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34588867

RESUMO

The physiological condition of plants is significantly affected by viral infections. Viral proliferation occurs at the expense of the energy and protein stores in infected plant cells. At the same time, plants invest much of their remaining resources in the fight against infection, making them even less capable of normal growth processes. Thus, the slowdown in the development and growth processes of plants leads to a large-scale decrease in plant biomass and yields, which may be a perceptible problem even at the level of the national economy. One form of protection against viral infections is treatment with small interfering RNA (siRNA) molecules, which can directly reduce the amount of virus that multiplies in plant cells by enhancing the process of highly conserved RNA interference in plants. The present work demonstrated how pre-treatment with siRNA may provide protection against MDMV (Maize dwarf mosaic virus) infection in sweet corn (Zea mays cv. saccharata var. Honey Koern). In addition to monitoring the physiological condition of the maize plants, the accumulation of the virus in young leaves was examined, parallel, with changes in the plant RNA interference system and the ethylene (ET) biosynthetic pathway. The siRNA pre-treatment activated the plant antiviral defence system, thus significantly reducing viral RNA and coat protein levels in the youngest leaves of the plants. The lower initial amount of virus meant a weaker stress load, which allowed the plants to devote more energy to their growth and development. In contrast, small RNA pre-treatment did not initially have a significant effect on the ET biosynthetic pathway, but later a significant decrease was observed both in the level of transcription of genes responsible for ET production and, in the amount of ACC (1-aminocyclopropane-1-carboxylic acid) metabolite. The significantly better physiological condition, enhanced RNAi response and lower quantity of virus particles in siRNA pretreated plants, suggested that siRNA pre-treatment stimulated the antiviral defence mechanisms in MDMV infected plants. In addition, the consistently lower ACC content of the plants pre-treated with siRNA suggest that ET does not significantly contribute to the successful defence in this maize hybrid type against MDMV.

5.
Environ Sci Pollut Res Int ; 27(19): 23664-23676, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32291640

RESUMO

Plant height is among the most important agronomic traits influencing crop yield. Wheat lines carrying Rht genes are important in plant breeding due to their both higher yield capacity and better tolerance to certain environmental stresses. However, the effects of dwarf-inducing genes on stress acclimation mechanisms are still poorly understood. Under the present conditions, cadmium stress induced different stress responses and defence mechanisms in the wild-type and dwarf mutant, and the mutant with the Rht-B1c allele exhibited higher tolerance. In the wild type after cadmium treatment, the abscisic acid synthesis increased in the leaves, which in turn might have induced the polyamine and proline metabolisms in the roots. However, in the mutant line, the slight increment in the leaf abscisic acid content accompanied by relatively high salicylic acid accumulation was not sufficient to induce such a great accumulation of proline and putrescine. Although changes in proline and polyamines, especially putrescine, showed similar patterns, the accumulation of these compounds was antagonistically related to the phytochelatin synthesis in the roots of the wild type after cadmium stress. In the dwarf genotype, a favourable metabolic shift from the synthesis of polyamine and proline to that of phytochelatin was responsible for the higher cadmium tolerance observed.


Assuntos
Cádmio , Triticum , Fitoquelatinas , Poliaminas , Prolina
6.
Biol Futur ; 71(3): 265-271, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34554506

RESUMO

Some recent results reported that aspirin (acetylsalicylic acid) had a positive effect on the treatment of certain types of cancer. However, the results cannot be generalized and it is not always clear whether it is a direct anticancer effect or a general health effect. Since plants produce different amounts of salicylic acid, we have sought a relationship between the salicylic acid content of some plant extracts and their anticancer activity. Growing of wheat and rice plants were carried out under controlled conditions. The salicylic acid content was determined by high-performance liquid chromatography. The viability and cell cycle assays were performed on HepG2 and Caco-2 cell lines. Despite the high content of salicylic acid, the extracts from rice plants did not show significant anticancer activity. In spite of the low salicylic acid content, the positive effect of wheat germ was confirmed in both tests. There is no direct relationship between the salicylic acid content of the plant extracts and their anticancer activity. However, it has been proven that young wheat germ is more effective than mature leaf.


Assuntos
Antineoplásicos Fitogênicos/análise , Oryza/química , Ácido Salicílico/análise , Triticum/química , Células CACO-2 , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos
7.
Ecotoxicol Environ Saf ; 148: 546-554, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29127816

RESUMO

In several cases a correlation was found between polyamines and abiotic stress tolerance. However, the individual polyamines may have different effects, which also vary depending on the type of treatment. When applied as seed soaking or added hydroponically 0.5mM putrescine and spermidine, different changes were induced during 50µM cadmium stress in wheat plants. Seed-soaked plants were exposed to cadmium immediately after germination for 5 days, while plants pre-treated with polyamines hydroponically were stressed at age of 14 days for 7 days. Putrescine pre-treatment was beneficial both as seed soaking and applied hydroponically, while spermidine only had a protective effect in the case of seed soaking, enhancing the Cd-induced oxidative stress when were pre-treated hydroponically. The differences observed were related to the polyamine metabolism. The accumulation of endogenous putrescine beyond a certain amount may be in relation with the negative effect of hydroponic spermidine pre-treatment during Cd stress. The increased putrescine content was also correlated with the highest accumulation of Cd, salicylic acid and proline contents in plants treated with a combination of spermidine and Cd. However, the expression level of the gene encoding phytochelatin synthase was only influenced by hydroponically applied spermidine, which decreased it under cadmium stress. Changes in the activities of antioxidant enzymes, diamine and polyamine oxidases were also discussed.


Assuntos
Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Putrescina/farmacologia , Poluentes do Solo/toxicidade , Espermidina/farmacologia , Triticum/efeitos dos fármacos , Antioxidantes/metabolismo , Cádmio/metabolismo , Prolina/metabolismo , Putrescina/metabolismo , Ácido Salicílico/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo , Poluentes do Solo/metabolismo , Espermidina/metabolismo , Triticum/metabolismo
8.
PLoS One ; 11(8): e0160157, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27490102

RESUMO

The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms.


Assuntos
Cádmio/toxicidade , Ácido Salicílico/farmacologia , Salicilato de Sódio/farmacologia , Zea mays/efeitos dos fármacos , Aminoaciltransferases/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Clorofila/análise , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Malondialdeído/análise , Estresse Oxidativo , Peroxidases/metabolismo , Fitoquelatinas/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Espectrometria de Fluorescência , Compostos de Sulfidrila/análise , Zea mays/metabolismo
9.
J Hazard Mater ; 280: 12-9, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25113613

RESUMO

Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.


Assuntos
Antioxidantes/metabolismo , Cádmio/toxicidade , Ácido Salicílico/metabolismo , Triticum/metabolismo , Adaptação Biológica , Ácido Benzoico/metabolismo , Cádmio/metabolismo , Ácidos Cumáricos/metabolismo , Expressão Gênica/efeitos dos fármacos , Genótipo , Inativação Metabólica , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Fitoquelatinas , Estresse Fisiológico , Triticum/efeitos dos fármacos , Triticum/genética
10.
Ecotoxicol Environ Saf ; 108: 129-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25062444

RESUMO

UV-B radiation may have either a positive or negative impact under the same conditions in wheat, depending on the type of secondary abiotic stressor: Cd or drought. Supplemental UV-B prevented the wilting and leaf rolling induced by PEG treatment. In contrast, combined UV-B and Cd treatment resulted in pronounced oxidative stress. The opposite effect of UV-B radiation in the case of drought or cadmium stress may be related to the alteration induced in the fatty acid composition. UV-B caused changes in the unsaturation of leaf phosphatidylglycerol fractions, and the accumulation of flavonoid in the leaves may prevent the stress induced by subsequent drought treatment. However it resulted in pronounced injury despite the increased flavonoid content in roots exposed to Cd. This was manifested in a drastic decrease in the unsaturation of the leaf monogalactosyldiacylglycerol and the root phosphatidylglycerol and digalactosyldiacylglycerol fractions. Data on the flavonoid content and fatty acid composition showed that oxidative stress was induced by drought in the leaves, by Cd in the roots, and interestingly, by UV-B radiation in both the leaves and roots. The additive effect of the combined stresses was also detected in the roots. The results presented here suggest a relationship between the capacity of the plant to remodel the fatty acid composition and its resistance to various stress factors.


Assuntos
Cádmio/toxicidade , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/efeitos da radiação , Lipídeos de Membrana/metabolismo , Triticum/metabolismo , Antioxidantes/metabolismo , Secas , Flavonoides/metabolismo , Galactolipídeos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Triticum/efeitos dos fármacos , Triticum/efeitos da radiação , Raios Ultravioleta , Água/metabolismo
11.
J Plant Physiol ; 169(10): 971-8, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22579359

RESUMO

Salicylic acid (SA) is a phenolic phytohormone with important roles in plant development, transpiration, endogenous signaling and defense against pathogens. One of the pathways of SA biosynthesis is located in the chloroplasts. The aim of the present work was to investigate the possible regulatory effects of SA on photosynthetic electron transport processes. Here we show that SA also affects leaf photosynthesis, via inducing stomatal closure and also by slowing down Photosystem II (PS II) electron transport. Photosynthetic CO2 incorporation and stomatal conductivity (measured with an infrared gas analyzer) were much lower in SA-infiltrated tobacco leaves than in untreated or water-infiltrated controls. PS II electron transport (calculated from PAM chlorophyll fluorescence data) was more sensitive to SA than Photosystem I (PS I) (measured with far red absorption). Direct probing of PS II charge separation and stabilization (measured with thermoluminescence), however, showed that these events were less affected in isolated thylakoid membranes than in leaves, suggesting that the effect of SA on PS II is indirect and different from similar effects of phenolic herbicides.


Assuntos
Nicotiana/efeitos dos fármacos , Nicotiana/fisiologia , Fotossíntese/efeitos dos fármacos , Ácido Salicílico/farmacologia , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/efeitos da radiação , Gases/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , Luz , Modelos Biológicos , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Teoria Quântica , Ácido Salicílico/metabolismo , Temperatura , Nicotiana/efeitos da radiação
12.
Plant Physiol Biochem ; 47(3): 224-31, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19091585

RESUMO

The present study investigated the possible mediatory role of salicylic acid (SA) in protecting plants from cadmium (Cd) toxicity. The exposure of pea plants to increasing Cd concentrations (0.5, 1.0, 2.0 and 5.0 microM) during early stages of their establishment, caused a gradual decrease in shoot and root fresh weight accumulation, the rate of CO2 fixation and the activity of ribulose-1,5-bisphosphate carboxylase (RuBPC, E.C. 4.1.1.39), the effect being most expressed at higher Cd concentrations. In vivo the excess of Cd-induced alterations in the redox cycling of oxygen-evolving centers and the assimilatory capacity of the pea leaves as revealed by changes in thermoluminescence emission after flash illumination. The levels of some important parameters associated with oxidative stress, namely lipid peroxidation, electrolyte leakage and proline production were increased. Seed pretreatment with SA alleviated the negative effect of Cd on growth, photosynthesis, carboxylation reactions, thermoluminescence characteristics and chlorophyll content, and led to decrease in oxidative injuries caused by Cd. The data suggest that the beneficial effect of SA during an earlier growth period could be related to avoidance of cumulative damage upon exposure to cadmium thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity. In addition, the observed high endogenous levels of SA after treatment with Cd suggests that SA may act directly as an antioxidant to scavenge the reactive oxygen species and/or indirectly modulate redox balance through activation of antioxidant responses. Taken together these evidences could explain at some extend the protective role of SA on photochemical activity of chloroplast membranes and photosynthetic carboxylation reactions in Cd-stressed pea plants.


Assuntos
Cádmio/toxicidade , Pisum sativum/efeitos dos fármacos , Ácido Salicílico/farmacologia , Ácidos Graxos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Luminescência , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo
13.
J Plant Physiol ; 165(15): 1647-51, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18602722

RESUMO

Wild-type tobacco plants (Nicotiana tabacum L. cv. Petit Havanna line SR1) and plants transformed with full-length alfalfa ferritin cDNA with the chloroplast transit peptide under the control of a Rubisco small subunit gene promoter (C3 and C8) were cold-treated at 0 degrees C with continuous light (250 micromol m(-2)s(-1)). These transgenic plants had higher chlorophyll content and higher F(v)/F(m) chlorophyll-a fluorescence induction parameters than wild-type plants after 2 or 3d of cold treatment in C3 and C8 transgenic plants, respectively. Thermoluminescence studies on the high-temperature bands suggest that these plants suffered less oxidative damage in comparison to the wild-type genotype. The present experiments provide evidence that transgenic tobacco lines overexpressing alfalfa ferritin, which is accumulated in the chloroplasts, may show higher tolerance to various stress factors, generating ROS including low temperature-induced photoinhibition.


Assuntos
Cloroplastos/metabolismo , Temperatura Baixa , Ferritinas/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Fotossíntese/fisiologia , Ferritinas/genética , Medicago sativa , Plantas Geneticamente Modificadas
14.
J Plant Physiol ; 165(9): 920-31, 2008 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-17913285

RESUMO

The present study investigated the possible mediatory role of salicylic acid (SA) in protecting photosynthesis from cadmium (Cd) toxicity. Seeds of maize (Zea mays L., hybrid Norma) were sterilized and divided into two groups. Half of the seeds were presoaked in 500 microM SA solution for only 6h, after which both groups were allowed to germinate for 3d and were then grown for 14d in Hoagland solution at 22/18 degrees C in a 16/8-h light/dark period and 120 micromolm(-2)s(-1) PAR. All seedlings (without H(2)O and SA controls) were transferred to Cd-containing solutions (10, 15, and 25 microM) and grown for 14d. The rate of CO(2) fixation and the activity of ribulose 1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were measured. Changes in the levels of several important parameters associated with oxidative stress, namely H(2)O(2) and proline production, lipid peroxidation, electrolyte leakage, and the activities of antioxidative enzymes (superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), and guaiacol peroxidase (POD, EC 1.11.1.7)) were measured. Exposure of the plants to Cd caused a gradual decrease in the shoot and root dry weight accumulation, with the effect being most pronounced at 25 microM Cd. Seed pretreatment with SA alleviated the negative effect of Cd on plant growth parameters. The same tendency was observed for the chlorophyll level. The rate of CO(2) fixation was lower in Cd-treated plants, and the inhibition was partially overcome in SA-pretreated plants. A drop in the activities of RuBPC and PEPC was observed for Cd-treated plants. Pretreatment with SA alleviated the inhibitory effect of Cd on enzyme activity. Proline production and the rates of lipid peroxidation and electrolyte leakage increased in Cd-treated plants, whereas the values of these parameters were much lower in SA-pretreated plants. Treatment of plants with Cd decreased APX activity, but more than doubled SOD activity. Pretreatment with SA caused an increase in both APX and SOD activity, but caused a strong reduction in CAT activity. The data suggest that SA may protect cells against oxidative damage and photosynthesis against Cd toxicity.


Assuntos
Cádmio/toxicidade , Fotossíntese/efeitos dos fármacos , Ácido Salicílico/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Ascorbato Peroxidases , Cádmio/antagonistas & inibidores , Cádmio/metabolismo , Dióxido de Carbono/metabolismo , Catalase/metabolismo , Clorofila/metabolismo , Eletrólitos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidase/metabolismo , Peroxidases/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Prolina/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Superóxido Dismutase/metabolismo , Zea mays/enzimologia , Zea mays/crescimento & desenvolvimento
15.
Photosynth Res ; 84(1-3): 161-6, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16049769

RESUMO

Leaf discs of dark-adapted tobacco plants were excited by 2 flashes and kept in darkness at 20 degrees C for various time periods, then thermoluminescence emission was recorded without freezing the sample. The B band at 30 degrees C decreased with a half-time t1/2 approximately 1 min and the AG band at 45 degrees C with a t1/2 approximately 5 min. This corresponds to the decay kinetics of S2/3 in PS II centres in the state S2/3 QB - (B band) or S2/3 QB. Assuming that the 45 degrees C band is an 'afterglow' emission originating from those centres with an oxidized QB on which an electron is back-transferred from stroma reductants through a pathway induced by warming, the theoretical ratio of the B and AG band was compared to that measured experimentally. After 2 or 3 flashes producing mainly S3, the intensity of AG band encompassed several fold that of the B band, because recombining S3 recreated S2 QB AG-emitting centres. In order to confirm that the AG band is governed by the heat-induced activation of a dark QB-reducing pathway rather than by PS II charge recombination, the AG emission was characterized in triazine-resistant Chenopodium album weed biotypes. In these mutants where the QB pocket is altered, the B band is strongly downshifted to 18 degrees C, compared to 32 degrees C in the wild type, whereas the AG band is only downshifted by 3 or 4 degrees C, demonstrating that S2/3 QB - is not the limiting step of the AG emission.


Assuntos
Clorofila/química , Clorofila/metabolismo , Luminescência , Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/química , Chenopodium/química , Chenopodium/metabolismo , Transporte de Elétrons , Fotoquímica , Complexo de Proteína do Fotossistema II/metabolismo , Temperatura , Fatores de Tempo , Nicotiana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA