Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1327894, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313678

RESUMO

Introduction: Recent advances in sequencing technologies have significantly increased our capability to acquire large amounts of genetic data. However, the clinical relevance of the generated data continues to be challenging particularly with the identification of Variants of Uncertain Significance (VUSs) whose pathogenicity remains unclear. In the current report, we aim to evaluate the clinical relevance and the pathogenicity of VUSs in DNA repair genes among Tunisian breast cancer families. Methods: A total of 67 unsolved breast cancer cases have been investigated. The pathogenicity of VUSs identified within 26 DNA repair genes was assessed using different in silico prediction tools including SIFT, PolyPhen2, Align-GVGD and VarSEAK. Effects on the 3D structure were evaluated using the stability predictor DynaMut and molecular dynamics simulation with NAMD. Family segregation analysis was also performed. Results: Among a total of 37 VUSs identified, 11 variants are likely deleterious affecting ATM, BLM, CHEK2, ERCC3, FANCC, FANCG, MSH2, PMS2 and RAD50 genes. The BLM variant, c.3254dupT, is novel and seems to be associated with increased risk of breast, endometrial and colon cancer. Moreover, c.6115G>A in ATM and c.592+3A>T in CHEK2 were of keen interest identified in families with multiple breast cancer cases and their familial cosegregation with disease has been also confirmed. In addition, functional in silico analyses revealed that the ATM variant may lead to protein immobilization and rigidification thus decreasing its activity. We have also shown that FANCC and FANCG variants may lead to protein destabilization and alteration of the structure compactness which may affect FANCC and FANCG protein activity. Conclusion: Our findings revealed that VUSs in DNA repair genes might be associated with increased cancer risk and highlight the need for variant reclassification for better disease management. This will help to improve the genetic diagnosis and therapeutic strategies of cancer patients not only in Tunisia but also in neighboring countries.

2.
Transl Oncol ; 43: 101912, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387387

RESUMO

INTRODUCTION: Cancer management in Africa faces diverse challenges due to limited resources, health system challenges, and other matters. Identifying hereditary cancer syndromic cases is crucial to improve clinical management and preventive care in these settings. This study aims to explore the clinicopathological features and genetic factors associated with hereditary cancer in Tunisia, a North African country with a rising cancer burden MATERIALS AND METHODS: Clinicopathological features and personal/family history of cancer were explored in 521 patients. Genetic analysis using Sanger and next-generation sequencing was performed for a set of patients RESULTS: Hereditary breast and ovarian cancer syndrome was the most frequent cluster in which 36 BRCA mutations were identified. We described a subgroup of patients with likely ''breast cancer-only syndrome'' among this cluster. Two cases of Li-Fraumeni syndrome with distinct TP53 mutations namely c.638G>A and c.733G>A have been identified. Genetic investigation also allowed the identification of a new BLM homozygous mutation (c.3254dupT) in one patient with multiple primary cancers. Phenotype-genotype correlation suggests the diagnosis of Bloom syndrome. A recurrent MUTYH mutation (c.1143_1144dup) was identified in three patients with different phenotypes CONCLUSION: Our study calls for comprehensive genetic education and the implementation of genetic screening in Tunisia and other African countries health systems, to reduce the burden of hereditary diseases and improve cancer outcomes in resource-stratified settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA